
FEATURE 

MACH: 
THE MODEL FOR 

FUTURE UNIX 
Will a new, object-oriented kernel 

change the face of Unix? 

Avadis Tevanian Jr. and Ben Smith 

U 
nix is over 20 years old . While the computer 
hardware for Unix has radically changed since 
Unix was first designed , the basic concepts of 
the operating-system kernel have remained the 
same. . 

The Mach kernel is designed to take advantage of new com-
puter architectures and provide for the needs of modern pro-
grams. It is also a return to the original Unix concept of having 
only the most essential functions in the kernel-a concept that 
has been lost in the versions of Unix from the big-iron computer 
manufacturers, whose kernels can exceed 2 megabytes . 

Great Ideas from a Small Team 
A small group of researchers at Carnegie Mellon University 
started the design of Mach in 1984. They wrote the first lines of 
code in 1985 . Originally, Mach was intended to support large-
scale parallel computation. However, early on in the design 
phase , the team decided that designing only for large-scale par-
allel computation would be of limited life and utility. So they 
changed the design to make it independent of the hardware ar-
chitecture. Mach was initially implemented on the VAX-
11 /780 and now runs on a wide range of hardware , including 
almost all VAX processors, the IBM RT PC, Sun-3 worksta-
tions, the Encore Multimax , the Sequent Balance 21000, vari-
ous 80386 machines, and the NeXT Computer. 

Mach is designed to handle problems associated with both 
parallel programming on multiprocessor machines and distrib-
uted programming, where the work is done by several separate 
computers communicating over a network . The concept of 
multiple threads of control executing in parallel within a single 
task facilitates parallel computing . A capability-based inter-
process communication mechanism eases distributed program-
ming. Finally, an extremely powerful virtual memory system 
allows applications of all sizes to efficiently share the memory 
resources of these complex architectural designs . With Mach, 
these very same concepts work equally well on inexpensive , 
single-processor machines. 

To derive Mach, the Carnegie Mellon team extended the 
model of Unix computing by adding five abstractions: the task, 
the thread, the port , the message, and the memory object. Obvi-
ously , the language and concepts of object-oriented program-
ing permeate the design of Mach. Many people call Mach an 
"object-oriented operating system." 

The Mach kernel maintains only the most basic services: 
processor scheduling, interprocess communication, and man-
agement of virtual memory. All other services are service 
tasks , independent user-level programs . 

Tasks and Threads 
Mach splits the traditional Unix abstraction of a process into a 
task and threads. A task is the environment in which threads 
run. It includes protected access and control of all system re-
sources, including the CPUs, the physical 1/0 ports, and mem-
ory (virtual and real). The structures associated with files are 
in the domain of the task. A task address space uses a structured 
map of memory objects (see below). 

A thread is an entity (an object) capable of performing com-
putation, and for low overhead, it contains only the minimal 
state necessary. Another term for a thread is a lightweight pro-
cess . A thread contains the processor state, the contents of a 
machine ' s registers . All threads within a task share the virtual 
memory address space and communications privileges associ-
ated with their task. The Unix abstraction of a process is simu-
lated in Mach by combining a task and a single thread. How-
ever , Mach goes beyond this abstraction by allowing multiple 
threads to execute simultaneously within a task. On a multipro-
cessor, multiple threads can, in fact, execute in parallel on sep-
arate processors , whereas on a uniprocessor they only concep-
tually execute in parallel. 

Ports, Port Sets, and Messages 
A port is a communications channel , a sort of object reference 
for tasks , threads, and other objects . Application programs 

continued 

NOVEMBER 1989 • B Y T E 411 



FE A T U RE 
MACH: THE MODEL FOR FUTURE UNIX 

Mach on NeXT Cube 
W hile most current users of Mach 

are content to rely on Uni x com-
patibility , NeXT has found the basic 
functionality of a Unix system to be 
insufficient to produce high-quality 
end-user applications software. NeXT 
utilizes the Mach functionality for com-
munication between applications and 
window servers, sound playback and re-
cording servers , and other applications . 

fi ne the user interface; the Interface 
Builder is a rool that allows the user in-
terface for NextStep-oonforming appli-
cations to be built with little or no pro-
gramming; finally , the Workspace 
Manager provides a graphical user in-
terface to a user 's files and applications. 

intertask message-passing primitives. 
Sound playback and recording make 

extensive use of Mach features. On a 
NeXT machine , compact-disk-quality 
sou nd can be synthesized in a digital 
signal processor. The device driver re-
sponsible for controlling the DSP and 
the sou nd direct-memory-access chan-
nels is accessed using Mach's message-
passing primitives. This allows great 
flexibility in how the hardware can be 
accessed and provides network-trans-
parent access to the driver. Threads are 
also used by high-level sound software 
to control sound I/O for an application 
that needs to perform normal process-
ing while playing or recording sounds. 

Applications on the NeXT Computer 
convey information to a user according 
to the NextStep User Interface, which 
compri ses severa l components: The 
Window Server manages a ll the win-
dows on a display ; the Application is 
an implementation of the classes that de-

Two major types of communication 
occur between NextStep applications . 
First, applications communicate with 
the Window Server in order to imple-
ment a graphica l user interface accord-
ing to the client/server model. Second , 
applications communicate with each 
other using the Workspace Manager as a 
rendezvous point. Both types of com-
munication are performed using Mach 's 

communicate with objects managed by the kernel and server 
tasks through the objects' ports. This is the software counter-
part to the communications port s on the hardware. An object is 
sa id to have " access rights " to a port if it has dealings with that 
port. A port can move around from object to object, li ke mov-
ing a board and the cables connected to it from one machine to 
another. 

The object that has the port screwed into it is said to have 
receive access rights to the port. Receive access rights imply 
send access rights as well. More than one thread may concur-
rently attempt to receive messages from a given port, but al 1 the 
threads must be within the same task. In other words , onl y one 
task can have receive access rights to the port. 

The object intending to pipe messages to the port has send 
access rights. More than one thread and more than one task can 
hold send access rights to any port. Messages travel from the 
object with send access rights to the port on the object with re-
ceive access r ights. 

For the time being , there is also a third port access right, 
ownership, which determines which object gai ns receive rights 
when these rights are relinquished. The Mach documentation 
implies that ownership rights will probably not be implemented 
in future releases- a definite discouragement for using this 
privilege. 

Both tasks and threads have a specia l kernel port by which 
the kernel recognizes them . 

Some special types of ports are assoc iated only with tasks: 
the notify port , through which the task receives messages from 
the kernel about its port access rights and the status of messages 
it has sent ; the exception port , through which the task receives 
messages from the kernel when an exception occurs (see "Ex-
ception Handling," below) ; and the bootstrap port, with which 
new tasks attach to any services that they need. 

Threads a lso have some special types of ports: the thread 
reply port , for early messages from a young thread ' s parent and 
ea rly remote procedure calls (RPCs); and the thread exception 
port , simila r to the task exception port. Ports can be strung to-
gether into port sets , through which several objects can grab 
any messages from a single message queue . 

A message is a string of data prefi xed by a header. The head-
er describes the message and its destination. T he body of the 
message may be as large as the entire address space of a task. 

412 B YT E • NOVEMBER 1989 

There are simple messages , which don ' t contain any references 
to other ports ; and non-simple messages, which can make refer-
ence to other ports-conceptually similar to indirect ad-
dressing. 

Messages are the primary way that tasks communicate with 
each other and the kernel. They can even be sent between tasks 
on different computers. 

The Memory Object 
Each Mach task can use up to 4 gigabytes of virtual memory for 
the execution of its threads. This space is used for the memory 
objects but a lso for messages and memory-mapped files. 

When a task al locates regions of virtual memory , the regions 
must be a ligned on page boundaries . The task can create mem-
ory objects for use by its threads; these can actually be mapped 
onto the space of another task. Spawning new tasks is more ef-
ficient because memory does not need to be copied to the child . 
The child needs only to touch the necessary portions of its par-
ent's address space. W hen spawning a child task, it is possible 
to mark the pages to be copied or protected (the child is prohib-
ited access). 

Since messages are actua lly mapped into the virtual memory 
resources of tasks, intertask (interprocess) communication is 
fa r more efficient than old-time Unix implementations where 
the messages are copied from one task to the limited memory 
space of the kernel and then to the task receiving the message. 
In Mach, the message actually resides in the memory space 
shared by the communicating tasks . 

Memory-mapped files faci litate program development by 
simplify ing memory and file operations to a single set of opera-
tions for both . However, Mach still supports the standard Uni x 
file read, write, and seek system call s. 

Virtual Memory 
The Mach virtual memory system provides the programmer 
with a clean interface, which allows virtual memory to be allo-
cated and dea llocated at arbitrary addresses and sizes , re-
stricted only by the page size of the underlying hardware . Ap-
plications can, on a page-by-page basis, specify access modes 
such as read-only, read/write , or shared . Finally , also on a 
page-by-page basis , virtual memory can be shared between 

continued 



FE AT U RE 
MACH: THE MODEL FOR FUTURE UNIX 

tasks in a controlled fashion that is based on inheritance. 
The virtual memory system achieves portability by splitting 

its implementation into two parts . The first part, the architec-
ture-independent part, is common to all implementations of 
Mach . The second part, the architecture-dependent part, is 
specific to each hardware architecture that Mach runs on. This 
split makes it possible for Mach to provide a consistent, high 
level of functionality on all hardware architectures with only a 
minimal porting effort. 

Open Memory Management 
Instead of limiting virtual memory semantics to those defined 
by the kernel, Mach provides an interface that allows user-level 

t eMach 
kernel guarantees that only 

authorized senders can send messages 
on a particular port. 

programs (external memory managers) to define the exact se-
mantics of virtual memory that can be mapped into any task's 
virtual address space. Such programs are responsible for han-
dling operations such as " page in " (when a page of memory is 
referenced) and "page out" (when a page of memory is moved 
out of the normal working set). In addition, external memory 
managers can instruct the Mach kernel to take special action on 
memory, such as restrict access to data in order to provide data 
consistency and security. 

External memory management allows Mach to be extended 
in powerful ways without changing the base Mach kernel. For 
example, network-consistent shared memory can be imple-
mented by an external memory manager. The shared memory 
manager can use the external memory interface to control 
which pages of memory can be accessed by which machines at 
various times in order to guarantee control. Not only does this 
remove that complexity from the kernel, but it allows the shared 
memory manager to choose which algorithms it uses to enforce 
consistency and security . 

The Mach Kernel and IPC 
The kernel functions can be classified into the following five 
groups: 

• Task and thread management 
• Port management 
• Message queuing and support 
• Virtual memory management 
• Paging management 

The kernel is responsible for the creation and management of 
all tasks and threads, the structure of ports associated with the 
tasks and threads , the messages between objects (through the 
object ports) , and the allocation of physical and virtual mem-
ory. It manages what and how port capabilities are used. The 
kernel guarantees that only authorized senders or receivers can 
send or receive messages on each particular port. Thus , the 

414 BYTE • NOVEMBER 1989 

Mach kernel guarantees secure interprocess communication 
(IPC) within a host. 

The Mach kernel automatically queues messages for tasks 
executing on its machine. However , transmission of messages 
between separate Mach hosts is performed transparently by an 
intermediate server task . 

The task is the network mes-
sage server, and it mainta; ·s the mapping of local "proxy" 
ports to global " network" It forwards messages using 
network protocols of its choi• 1n addition, it is free to make 
decisions related to security, , ick of it, depending on the en-
vironment in which it is run . 

Exception Hl!ndling vs. Signal Handling 
In tradit; - Unix , signals are used for notifying programs of 
events externa l to the 1--:ogram. The handling of signals is done 
within the program, but the semantics vary from one kind of 
signal to another. Signals come from only a portion of the 
events that affect a program from the outside. Bus errors, seg-
mentation and protection violations, arithmetic processor 
errors (e.g., underflow , overflow, and divide by zero), and 
events associated with debugging also need to be able to com-
municate with programs. External events that affect the execu-
tion of a program are called exceptions . The traditional ways of 
handling exceptions (through application program signal han-
dling and kernel handling of hardware errors) separate the ap-
plication program or service program from the hardware that 
caused the exception and assume that there is only one proces-
sor (no longer a valid assumption). 

Mach has taken a generalized view of all exceptions. An ex-
ception requires suspension of the "victim" thread that caused 
the event and the notification of an exception handler. The han-
dler performs some operations as a result of the exception, and 
then the victim is either revived or terminated. Because the 
handler is never within the victim thread, all the exception han-
dling involves a form of RPCs . Mach ports and messages are 
the elements through which all this happens. The handler 's 
port for communicating with the task is the thread (or task) ex-
ception port. 

This design provides a single facility with a consistent meth-
od of handling all exceptions, a simple interface, full support 
for debuggers and error handlers , and no duplication of func-
tionality within the kernel. In addition, and of great interest to 
developers and researchers , this design allows for user-defined 
exceptions . 

System Layers 
The Mach kernel provides only the basic primitives needed for 
building distributed and parallel applications. Although Unix is 
an operating system, it is also a complete environment suitable 
for use by developers and end users . Mach is just a kernel. The 
operating-system environment is built on top of it. But, since 
Mach makes few traditional operating-system decisions within 
the kernel itself, it is possible to build a completely different 
operating-system environment on top of it. 

Currently, the Mach kernel is the basis for a BSD 4. 3 Unix-
compatible system. In this system, the Mach kernel implements 
the features particular to an operating-system kernel and the 
features provided by the Mach kernel interface. Unix compati-
bility is provided by the original BSD 4.3 implementation, 
modified for use with Mach. In effect, many of the internals of 
BSD 4.3 have been replaced with Mach equivalents. This tech-
nique yields a highly compatible system with performance 
often exceeding that of the original BSD 4.3 system. 

continued 



Circle 225 on Reader Service Card 

Cll !f 
f(e!:J Create a keyboard 
so easy to use, costly training time turns 
into instant productivity! 

Custom Keys and Snap-On IBM KeyCaps: Available in a wide variety 
of colors and imprinted in your choice of colors and fonts . Keytop and 
Keyfront Labels: Supporting emulation, word processing or custom made 
to your specs. Won't wear out or come off keys until intentionally removed. 
FlexShield Keyboard Protectors: Extend keyboard life. Protect from dirt , 
liquid and damaging environments without restricting keyboard operation. 
Call for your FREE CATALOG of Cusrom Keyboard Enhancements. 

l.JOOleon -i CORPORATION FAX: 602 634-4620 
P.O. Box 201, Dept. BYTE, Cornville, AZ 86325 

SEE US AT FALL COMDEX IN THE RIVIERA - BOOTH R8534 
416 BYTE • NOVEMBER 1989 Circle 365 on Reader Service Card 

FEATURE 
MACH: THE MODEL FOR FUTURE UNIX 

OS/2 and Mach 
Like Mach, OS/2 supports threads, virtual memory, and mes-
sage-passing mechanisms. Although Mach and OS/2 provide 
similar types of functionality at the lowest levels , they differ in 
important ways. 

OS/2 threads , for example, have some unusual semantics. 
Instead of the Mach model of all threads being equal , OS/2 
treats some threads (e.g ., the first thread in a process) special-
ly. It manages virtual memory in segments, rather than pages-
a finer grain and more flexible control than segments. Also, 
OS/2 imposes some other restrictions , such as the use of differ-
ent memory allocators for different-size memory regions . 
Rather than provide one coherent mechanism for interprocess 
communication, OS/2 provides many different mechanisms 
(e.g., semaphores , pipes, queues, and signals). OS/2 lacks 
multiuser operations. Finally , OS/2 was designed to run on 
Intel 80286/80386 processors and is not portable to other pro-
cessor families. This is not to say that OS/2 doesn't do well in 
its own niche , but it is not as complex or universal as Mach. 

The Future of Mach 
Unix compatibility makes Mach attractive to a wide audience 
by allowing it to transcend its role as a research project and 
emerge as a viable commercial operating system. The NeXT 
Computer already provides an excellent example of how to tie 
visual displays to audio input and output. The primitives of 
Mach were essential for NeXT to implement tliis functionality 
efficiently in a true multitasking environment. (See the text box 
" Mach on the NeXT Cube" on page 412.) 

Mach is also influencing how other systems evolve. In the 
future, more and more systems are likely to support Mach fea-
tures . Mach has become the platform for experimental Unix 
operating-system work. For instance, Trusted Information Sys-
tems , under a Defense Advanced Research Projects Agency 
contract, evaluated Mach as a possible base for a verifiably se-
cure operating system, a " trusted system" meeting the B3 level 
of security as specified in the National Computer Security 
Center's "Orange Book." (See " Safe and Secure?" in the May 
BYTE.) Researchers at Trusted Information Systems ascer-
tained that Mach's design made implementation of classifica-
tion labels and access control lists much easier than in tradition-
al Unix. The design separation of the kernel and services made 
modification of the operating system much more straightfor-
ward and easier to verify as being a trusted system. They have 
gone on to build a proof-of-concept prototype trusted system. 
But until Mach is free of BSD code, a truly trusted Mach oper-
ating system will not be possible. Meanwhile, they are working 
with the Mach team at Carnegie Mellon to ensure that facilities 
for trusted systems be properly implemented in future releases . 

Work on Mach continues at Carnegie Mellon and organiza-
tons such as NeXT. Eventually Mach will stand on its own and 
be completely free of BSD code. It will have been shaped by the 
tortuous tests of many other institutions, including industry and 
government. Thanks to the availability of Mach on the NeXT 
Computer, the ideas of thousands of researchers and students 
will add to its clever design and continue to shape it for modern 
computer design and software. It's a great example for all de-
velopers of applications and operating systems. But as operat-
ing systems go , Mach is very young, and few people understand 
all the possibilities it really provides . • 

Avadis Tevanian Jr. is the chief operating-system scientist at 
NeXT, Inc. He can be reached on BIX c/o "editors. "Ben Smith 
is a BYTE technical editor and can be reached on BIX as 
"bensmith. " 


