SPECIAL REPORT

ADVANCED
OPERATING SYSTEMS

A look inside the next generation of computing
environments, including IBM's Workplace 0S, Microsoft's
NT, and software from Novell/USL, Sun, Next, and Taligent

d
o |
OBJECTS

PERSONALITIES

Small Kernels Hit it Big ... rxe10 Objects on the March ... rues Personality Plus ... page 155
Microkernels are the core of new operating Object-oriented operating systems will benefit How the Workplace 0S and NT implement
systems, but the implementations vary. programmers and users alike, as well as pave the emulation, plus a look at Wabi, SoftWindows,

road to distributed computing. and Equal.

The Chorus Microkernel page 131

SPECIALPP-GRAEIITXe M R EPORT
Operating

Systems

The Great OS Debate

Since the dawn of microcomputing, users and developers have jousted with one another to defend the
honor of their chosen operating systems. The battle still rages; the dust hasn’t even begun to settle. New
contenders will exploit mainstream RISC workstations built around MIPS, Alpha, and PowerPC
processors even as they ride the Intel performance escalator. But the grounds of the operating-system
debate are subtly shifting. Microsoft, IBM, USL (Unix Systems Laboratories), Sun Microsystems, and
others are rapidly converging on a set of common design themes—microkernels, objects, and per-
sonalities. The battle is no longer about whether to layer object-oriented services and emulation sub-
systems (i.e., personalities) on a small kernel. Everyone’s doing that. The question isn’t whether to build
an operating system in this style but zow to do the job right. — Jon Udell, Senior Technical Editor

MICROKERNELS

In Windows NT, layered subsystems com-
municate by passing messages through a mi-
crokemel. But NT doesn’t follow the pure mi-
\ crokernel doctrine, which holds that all
nonessential services should run in the processor’s nonprivi-
leged (user) mode. IBM, USL, and others say that NT’s execu-
tive, a layer above the NT microkernel that runs security, VO, and
other services in privileged (kernel) mode, compromises NT’s
claim to be a microkernel-based system. Microsoft, however,
notes that NT"s privileged-mode executive subsystems commu-
nicate with each other and with the kernel by passing messages,
just as its user-mode emulation subsystems do.

IBM’s Mach-based Workplace OS, meanwhile, will adhere to
the pure microkemnel doctrine, relegating the pager, the scheduler,
the security system, the file systems, and even major parts of its
device drivers to user mode. With this approach, says IBM, its mi-
crokemel will be especially valuable as a base that OEMs can cus-
tomize for specific purposes. USL, however, says that its Chorus
microkernel, which can run services in kernel mode or user
mode, gives the best of both worlds. It can locate services in
kernel mode for performance or in user mode for flexibility.

In “Small Kernels Hit It Big,” Peter D. Varhol explores these
and other issues across a range of microkernel-based systems.
And in “The Chorus Microkernel,” Dick Pountain takes a close
look at the advanced technology chosen by USL as the founda-
tion for future Unixes.

OBJECTS

As applications supporting Microsoft’s OLE
2.0 begin to roll out, mainstream users are
getting a glimpse of an object-oriented, doc-
ument-centered style of computing in which
applications function as components. Apple, IBM, and partners

are countering with OpenDoc, a portable compound-document
standard that will bring OLE-like benefits to a broader range of
platforms than are supported by OLE. Apple says that Open-
Doc’s object technology, which relies on IBM’s groundbreaking
System Object Model, or SOM, offers developers and users the
full power of object-oriented programming—including inheri-
tance—while remaining language-neutral. Microsoft says that
OLE 2.0's Compound Object Model, which is closely aligned
with C++ yet does not support inheritance, will nevertheless
yield better results by requiring developers to articulate inter-
faces precisely and consistently.

On the horizon looms Taligent, an objects-from-the-ground-
up system that IBM and Apple say will redefine computing.
Meanwhile NextStep, available now on Intel and Motorola
platforms, delivers the distributed-object technology that the
others are all still talking about. In “Objects on the March,”
Peter Wayner explores some of the key issues in object and
distributed-object computing.

PERSONALITIES

But will it run 1-2-3? For the new breed of
operaling systems, the answer is almost cer-
tainly yes, even on non-Intel hardware,

; thanks to a hybrid emulation strategy that
offsets the inherent inefficiency of pure processor emulation by
implementing GUI libraries in native RISC code. Applications
lean heavily on GUI libraries nowadays; Windows and Mac li-
braries are appearing as “personalities” on a variety of new op-
erating systems.

In “Personality Plus,” Frank Hayes investigates how Microsoft’s
Windows NT and IBM's Workplace OS implement personalities.
Frank also explores popular third-party solutions like Sun’s
Wabi (Windows Application Binary Interface), Insignia Solu-
tions’ SoftWindows, as well as Quorum Software Systems’
Equal.

JANUARY 1994 BYTE 117

Advanced
SPECIAL NS FYSILFEaEs Py

REPORT

Systems

Small Kernels Hit It Big

PETER D. VARHOL

microkemel is a tiny op-
erating-system core that
provides the foundation
for modular, portable ex-
tensions. Every next-generation operat-
ing system will have one. However,
there’s plenty of disagreement about how
to organize operating-system services
relative to the microkernel. Questions
include how to design device drivers to
get the best performance while abstract-
ing their functions from the hardware,
whether to run nonkernel operations in
kemnel or user space, and whether to keep
existing subsystem code (e.g., a legacy
version of Unix) or to throw everything away and start
from scratch. IBM, Microsoft, and Novell’s Unix Systems
Laboratories answer these questions differently; each cem-
pany has strong opinions about how and why its approach
will work best.

It was the Next computer’s use of Mach that introduced
many of us to the notion of a microkemel. In theory, its
small privileged core, surrounded by user-mode services,
would deliver unprecedented modularity and flexibility.
In practice, that benefit was somewhat obscured by the
monolithic BSD 4.3 operating-system server that Next
wrapped around Mach. However, Mach did enable Next to
supply message-passing and object-oriented services that
manifest themselves to the end user as an elegant user in-
terface with graphical support for network setup, system ad-
ministration, and software development.

Then came Microsoft’s Windows NT, which touted not
only modularity but also portability as a key benefit of the mi-
crokemel approach. NT was built to run on Intel-, Mips-, and
Alpha-based systems (and others to follow) configured with
one or more processors. Because NT would have to run
programs originally written for DOS, Windows, 0S/2, and
Posix-compliant systems, Microsoft exploited the modu-
larity inherent in the microkemel approach by structuring NT
so that it did not architecturally resemble any existing op-
erating system. Instead, NT would support each layered op-
erating system as a separate module or subsystem.

More recently microkernel architectures have been an-
nounced by Novell/USL, the Open Software Foundation,
IBM, Apple, and others. One prime NT competitor in the
microkernel arena is Carnegie Mellon University’s Mach
3.0, which both IBM and OSF have undertaken to com-

mercialize. (Next still uses
Mach 2.5 as the basis of
NextStep, but it is looking
closely at Mach 3.0.) An-
other is Chorus 3.0 from
Chorus Systems, which
USL has chosen as the foun-
dation of its Unix offering
{see “The Chorus Micro-
kemel” on page 131). Sun’s
SpringOS, an object-orient-
ed successor to Solaris, will
use a microkernel, and the
Taligent Operating Envi-
ronment will rely on the
same microkemel that IBM
is developing for its Work-
place OS. Clearly, there's a

Suddenly

But Microsoft,

how best to

microkernels are
the central design
element of new
operating systems.

IBM, USL, and
others differ on

implement one.

trend away from monolithic
systems and toward the small-kernel approach. That’s no
surprise to QNX Software Systems and Unisys, two com-
panies that have for years offered successful microkernel-
based operating systems. QNX Software’s QNX serves
the real-time market, and Unisys’ CTOS is strong in branch
banking. Both systems exploit the modularity enabled by
a microkernel foundation with excellent results.

Fueling the current microkernel frenzy is the recent
fragmentation of the operating-system market. With no
one vendor a clear winner in the operating-system sweep-
stakes, each needs to be able to support the others’ ap-
plications. AT&T tried this tack a few years ago with Unix
System V release 4.0, by including support for the Berkeley

JANUARY 1994 BYTE 119

STEVE LYONS © 1994

Microkernels

and Xenix extensions. But while SVR4
has done well enough, it hasn’t been the
grand unification of Unix for which AT&T
(now Novell’s USL) had hoped. On the
other hand, Microsoft’s NT seems to have
succeeded—at least in this respect—by
being the first to unify multiple subsys-
tems capable of running Win32, Winl6,
DOS, 08/2, and Posix applications. IBM
is responding with a portable successor to
0S/2, the Workplace OS. Its truly modu-
lar operating-system architecture, with
plug-and-play components and multiple
operating-system personalities, may ad-
vance expectations still further.

Defining the Microkernel

A microkemel implements essential core
operating-system functions. It’s a founda-
tion for less-essential system services and
applications. Exactly which system ser-
vices are nonessential and capable of being
relegated to the periphery is a matter of
debate among competing microkernel im-
plementers. In general, services that were
traditionally integral parts of an operating
system—file systems, windowing systems,
and security services—are becoming pe-
ripheral modules that interact with the ker-
nel and each other,

When I first learned about operating
systems, the layered approach used by
Unix and its variants was the state of the art
in operating-systemn design. Groups of op-
erating-system functions—the file system,
IPC (interprocess communications), and
1/0 and device management—were di-
vided into layers. Each layer could com-
municate only with the one directly above
or below it. Applications and the operating
system itself communicated requests and
responses up and down the ladder.

While this structured approach often
worked well in practice, today it’s increas-
ingly thought of as monolithic because the
entire operating system is bound together
in the hierarchy of layers. You can’t easi-
ly rip out one layer and swap in another
because the interfaces between layers are
many and diffuse. Adding features, or
changing existing features, requires an in-
timate knowledge of the operating system,
a lot of time, some luck, and the willing-
ness to accept bugs as a result. As it be-
came clear that operating systems had to
last a long time and be able to incorporate
new features, the monolithic approach be-
gan to show cracks. The initial problems
vendors encountered when SVR4 shipped
in 1990 illustrate this point.

The microkernel approach replaces the

120 RBYTE JANUARY 1994

SPECTAL B IsYIF:NabsFe,

Advanced

Systems

vertical stratification of operating-system
functions with a horizontal one. Compo-
nents above the microkernel communicate
directly with one another, although using
messages that pass through the microker-
nel itself. The microkernel plays traffic
cop. It validates messages, passes them
between components, and grants access to
hardware.

This arrangement makes microkernels
well suited to distributed computing. When
a microkernel receives a message from a
process, it may handle it directly or pass
the message to another process. Because
the microkernel needn’t know whether the
message comes from a local or remote
process, the message-passing scheme of-
fers an elegant foundation for RPCs (re-
mote procedure calls). This flexibility
comes at a price, however. Message pass-
ing isn’t nearly as fast as ordinary func-
tion calls, and its optimization is critical
to the success of a microkernel-based op-
erating system. For example, NT can, in
some cases, replace message ports with
higher-bandwidth shared-memory com-
munications channels. While costly in
terms of nonswappable kernel memory,
this alternative can help make the mes-
sage-passing model practical.

Portability, Extensibility, and Reliability
With all the processor-specific code iso-
lated into the microkemel, changes needed
to run on a new processor are fewer and
group logically together. Since the proces-
sor market seems more likely to fragment
with competing designs than to converge
on a single architecture, running an oper-
ating system on more than one processor
may be the only way to leverage buyers’ in-
vestment in hardware. Intel is still on top of
the microprocessor hill, but IBM/Motoro-
la/Apple, DEC, Mips, and Sparc Interna-
tional, among others, are making deter-
mined runs at its dominant position.

Extensibility is also a major goal of mod-
em operating systems. While hardware can
become obsolete in a few years, the use-
ful life of most operating systems may be
measured in decades. Whether the operat-
ing system is small like DOS or large like
Unix, it will inevitably need to acquire fea-
tures not in its design. For example, DOS
now supports a disk-based file system, large
hard disks, memory management, and—
most radically—Windows. Few, if any, of
these extensions were envisioned when
DOS 1.0 shipped.

Operating-system designers have leamed
their lesson and now build operating sys-

REPORT

tems that make adding extensions man-
ageable. There’s no alternative. With in-
creasingly complex monolithic systems, it
becomes difficult, if not impossible, to en-
sure reliability. The microkernel’s limited
set of well-defined interfaces enables or-
derly growth and evolution.

There's also a need to subtract features.
More users would flock to Unix or NT if
these operating systems didn’t require 16
MB of memory and 70 MB or more of
hard disk space. Microkernel does not nec-
essarily mean small system. Layered ser-
vices, such as file and windowing sys-
tems, will add bulk. Of course, not
everyone needs C2 security or wants to
do distributed computing. If important but
market-specific features could be made
optional, the base product would appeal
to a wider variety of users. Martin McEl-
roy, brand manager for Workplace OS at
IBM’s Personal Systems Products divi-
sion, says that IBM’s Mach implementa-
tion will eventually run the gamut from
“palmtops to teraFLOPS.” The services
riding on the microkernel can be cus-
tomized to meet the necds of the platform
and the market.

The microkernel approach can also help
improve the overall quality of the com-
puting environment. Systems like Unix,
OSF/1, and NT require hundreds of thou-
sands of lines of code and take years to
mature. Programmers who write applica-
tions for these systems don’t have time to
worry about undocumented APIs; they’ve
got their hands full just learning about the
hundreds of APIs that are documented.
The leaming curve for new operating-sys-
tem calls is becoming so steep that no de-
veloper can reasonably expect to know
and use them all.

The result is that no one can guarantee
the correctness of code making use of sev-
eral system-service APIs, and no one can
guarantee even the correctness of the op-
erating system itself. A small microkernel
that offers a compact set of APIs (the OSF
microkernel will have about 200, and the
tiny QNX microkernel has just 14) im-
proves the chances of producing quality
code. This compact API is visible to the
systems programmer only; the applica-
tions programmer must still wrestle with
hundreds of calls. But it certainly enhances
the value of microkernels such as IBM’s,
which the company plans to license to
OEMs for customized development.

What's In and What's Out?
As we have seen, the proper division of

Microkernels

SPECIAL B FeYator:hals

Advanced

Systems

Dominant personality applications

 Dominant personality

Alternate personality applications

- "Allfan; l_-y_,?-.:.ﬂ_'

Other dominant
personality
services

Dominant
personality
server

| Master server(s)
; Multiple
personality support

* [nitiatization

* Naming

« Security

Defauit
pager

| Other altemate
personality
services

Alternate
personality

Other PNS
products
« File server

» Network services
» Database engines

Ehanced at:h 30 mcrkél

Tasks and
threads

Virtual memory

[_] Machine-independent code

[Device-dependent code

Host and
processor sets a
e

Vo support

__Intel 486 CPU o ' '
Intel 386 CPU Additional platforms

Il Machine-dependent code

IBM uses the Mach microkemel as the foundation for persenality neutral services and multiple

operating-system personalities.

labor between the microkernel and its
surrounding modules is a matter of debate.
The general idea is to include only those
features that absolutely need to run in su-
pervisor mode and in privileged space.
That typically means processor-dependent
code (including support for multiple
CPUs), some process management func-
tions, interrupt management, and message-
passing support.

Many microkernel designers include
process scheduling, but IBM’s implemen-
tation of Mach locates scheduling policy
outside the microkernel, using the kernel
only for process dispatch. IBM's approach
separates policy from implementation, but
it requires close collaboration between the
external scheduler and the kemel-resident
dispatcher.

Device drivers may be in-kernel, out-
of-kemel, or somewhere in between. Some
implementations (e.g., OSF’s) locate de-
vice drivers in the microkernel. 1BM and
Chorus locate the device drivers outside
of the microkernel but require that some
driver code run in kernel space so that in-
terrupts can be disabled and set. In NT,

122 BYTIC JANUARY 1994

device drivers and other I/O functions run
in kernel space but work with the kernel
only to trap and pass interrupts.

IBM’s Paul Giangarra, system architect
for the Workplace OS, says that separating
device drivers from the kernel enables dy-
namic configuration. But other operating
systems (e.g., NetWare and OSF) achieve
this effect without abstracting the devices
from the kernel. While NT doesn’t permit
dynamic configuration of device drivers,
Lou Perazzoli, project leader for NT de-
velopment, notes that its layered driver
model was designed to support on-the-fly
binding and unbinding of drivers. But the
necessary support for this feature didn’t
materialize in the first release of NT.

Dynamic configuration notwithstand-
ing, there are other reasons to treat device
drivers as user-mode processes. For ex-
ample, a database might include its own
device driver optimized for a particular
style of disk access, but it can’t do this if
drivers reside within the kernel. This ap-
proach also yields portability since device-
driver functions can, in many cases, be ab-
stracted away from the hardware.

REPORT

Mach and the Workplace 0S

IBM’s forthcoming Workplace OS uses a
Mach 3.0 microkernel that IBM has ex-
tended (in cooperation with the OSF Re-
search Institute) to support parallel-pro-
cessing and real-time operations. This
implementation counts five sets of features
in its core design: IPC, virtual memory
support, processes and threads, host and
processor sets, and 1/0 and interrupt sup-
port. Giangarra refers to the Workplace OS
microkemel as its hardware abstraction
layer (not to be confused with NT’s HAL,
which is just the lowest slice of the NT mi-
crokernel). The file system, the scheduler,
and network and security services appear in
a layer above the microkernel. These are
examples of what IBM calls personality
neutral services, or PNSes, because they're
available lo any of the individual operating-
system personalities layered above them.

A key distinction between the IBM PNS
layer and NT’s own service managers is
that IBM’s PNS layer runs in user space,
while the bulk of NT’s services run in ker-
nel space. IBM’s approach aims to let
OEMs add or replace system services
freely; NT’s system services are intended
to remain in place.

Perhaps the best way to describe the re-
lationship of the kernel to the nonkernel
processes is that the kernel understands
how the hardware works and makes the
hardware operation transparent to the
processes that set and enforce operating-
system policy. In IBM’s case, process and
thread management is a kernel function.
However, only the process dispatcher ac-
tually resides in the kernel. The scheduler,
which sets policy by checking priorities
and ordering thread dispatching, is an out-
of-kernel function.

This is an important distinction. Dis-
patching a thread to run requires hardware
access, so it is logically a kernel function.
But which thread is dispatched, Giangarra
says, is irrelevant to the kernel. So the out-
of-kernel scheduler makes decisions about
thread priority and queuing discipline.

The other microkernel implementations
don’t relegate the scheduler to the periph-
ery. Why would you want them to? In
IBM’s case, the company plans to license
its microkernel to other vendors, who
might need to swap the default scheduler
for one that supports real-time scheduling
or some specialized scheduling policy.
NT, which embodies the notion of real-
time priorities in its kernel-resident sched-
uler, does not currently expose these to
the programmer. You cannot modify or

Micrkemels

replace the NT scheduler.

Memory management, like scheduling,
is divided between the microkernel and a
PNS. The kernel itself controls the pag-
ing hardware. The pager, operating out-
side the kernel, determines the page re-
placement strategy (i.e., it decides which

IPC/Syscall
interface

Specific layer

process Base services

O0SF/1 1.3 runs the OSF/1 server as a monolithic

component on top of the Mach microkernel.

pages to purge from memory to accom-
modate a page fetched from disk in re-
sponse to a page fault). Like the sched-
uler, the pager is a replaceable component.
IBM is providing a default pager to boot
Workplace OS, but the primary paging
mechanism will be integrated with the file’
system. The Workplace OS file system
(like NT's) unifies memory-mapped file
1/0, caching, and virtual memory policies.

PNSes can include not only low-level
file system and device-driver services but
also higher-level networking and even
database services. Giangarra believes that
locating such application-oriented services
close to the microkernel will improve their
efficiency by reducing the number of func-
tion calls and enabling the service to in-
tegrate its own device drivers.

Mach and OSF/1

The OSF, whose OSF/1 1.3 will also in-
corporate Mach microkernel technology,
includes virtually the same microkernel
features as does IBM. The code for this
version of OSF/1 was frozen in Decem-
ber 1993 and is due to be distributed to
OSF licensees in the second quarter of
1994. 1BM is a member of the OSF, and
the two organizations have been exchang-
ing microkernel technologies. However,
OSF's approach differs from IBM’s in im-
portant ways. OSF/1 was reworked to be

124 BYTE JANUARY 1994

SPECIAL WS JsTciofaRassFey

Advanced

Systems

able to call Mach for basic system ser-
vices. Then the entire OSF/I server sys-
tem was placed on top of Mach and run
in user space. What IBM divides into sep-
arate PNSes and layered personalities, OSF
lumps into a single structure.

Why the monolithic Unix server riding
on top of the microkernel? OSF/1
is mature and proven code, and
the OSF says it wasn't feasible to
start from scratch. The amount of
code reuse between OSF/1 1.3
and the previous version of OSF/1
is over 90 percent. On the other
hand, the OSF is also rewriting
parts of the Mach kernel in C++,
to be able to provide better sup-
port for object management.

The net result is that OSF/1 1.3
is less modular than Workplace
OS. But by reusing a substantial
part of OSF/1, the OSF can ship a
more or less complete microker-
nel-based operating system to its
members ahead of the expected
debut of the Workplace OS in late
1994. Note that it is precisely this
configuration—the OSF/1 serv-
er running on Mach—that IBM currently
demonstrates as the Unix personality of
its Workplace OS.

The OSF’s goal is to let the Mach-plus-
OSF/1-server combination run efficiently
on massively parallel hardware systems.
One of the active areas of study in the OSF
Research Institute is to configure systems
with dozens or hundreds of processors and
to observe distributed operating-system
behavior as the number of processors
grows. The Mach microkernel will run on
all processors, but the server—which pro-
vides file system, process management,
and networking services—need run only
on some.

According to Ira Goldstein, vice presi-
dent of research and advanced develop-
ment at the OSF Research Institute, future
Mach-based versions of OSF/| will be able
to run the OSF/1 server system either in
user space or kernel space, depending on
the system administrator’s choice when
configuring the system. Running the
OSF/1 server in kernel space will improve
performance, because procedure calls will
replace message passing, and all server
code will remain in memory. Running the
server in user space makes it swappable,
potentially freeing memory for user pro-
grams. Note that USL is planning the same
sort of flexibility for its Chorus-based of-
fering. Arthur Sabsevitz, chief scientist at

REPORT

USL, expects the same advantages that
NetWare 4.0 developers currently enjoy.
Services will be developed and tested in
user space. Once debugged and deemed
trustworthy, they can move to kemel space
for best performance.

The OSF is still investigating the issue
of where to locate device-driver support.
Currently, drivers reside within the Mach
microkernel. Goldstein says this approach
should not preclude dynamic configura-
tion of drivers. Since the OSF is working
closely with IBM on microkernel issues, it
will look at the IBM approach to device
drivers when it receives the technology.

Is NT Really a Microkernel 0S?
NT’s microkernel serves primarily to sup-
port a specific set of user environments on
top of a portable base. Its concentration of
machine-specific code in the microkemnel
makes NT relatively easy to port across
diverse processors. NT is also exfensible,
but not in the same way IBM’s Workplace
OS will be. Whereas IBM wants to license
its microkernel separately, it is unlikely
that Microsoft will attempt to unbundle
NT’s microkernel. This is one reason why
many observers now conclude that NT is
not, in fact, a true microkernel in the same
sense that Mach and Chorus are. These
critics also note that NT does not rigor-
ously exclude layered services from ker-
nel space (although OSF/1 and Chorus/
MiX aren’t religious on this point either)
and that NT’s device drivers cooperate
minimally with the kernel, preferring to in-
teract directly with the underlying HAL.

Workplace OS applications talk to user-
mode “environment subsystems” that are
analogous to the Workplace OS’s person-
alities. Supporting these subsystems are
the services provided by the NT execu-
tive, which runs in kernel space and does
not swap to disk. Executive components
include the object manager, the security
monitor, the process manager, and the vir-
tual memory manager. The executive, in
turn, relies on lower-level services that the
NT kernel (or microkernel, if you will)
provides. Its services include scheduling
threads (the basic level of execution), han-
dling interrupts and exceptions, synchro-
nizing multiple processors, and recover-
ing from system crashes. The kernel runs
in privileged mode and is never paged out
of memory. It can only be preempted to
handle interrupts. The kernel rides on the
HAL, which concentrates most hardware-
specific code into a single location.

Lou Perazzoli says that NT"s design was

Microkemels

Logon
process

Security
subsystam

Hardware ab

M

passing. P>
System _ _
trap >

Hardware «...e
manipulation

SPECTAL NS JsYclif:hnhsley

Advanced

Systems

Posix
client
0s/2
subsystam

Posix
subsystem

services

Kernel

action layer

Microsoft’s Windows NT separates the device driver from the kernel and runs its operating-system

service managers in kernel space.

driven by strong biases toward performance
and networkability, as well as by the
requirement to support a specific set of
layered personalities. The resulting sepa-
ration of function between kernel and
nonkernel modules reflects these goals. For
example, data transfers to the file system
and across the network run faster in ker-
nel space, so NT provides in-kernel buffer-
ing for the small (16 to 32 KB) reads and
writes that typify client/server and distrib-
uted applications. Locating these /O func-
tions in the kernel may violate the academic
purity of the NT microkemel, says Peraz-
zoli, but it supports NT's design goals.
Decisions regarding mechanism and
policy were motivated by similarly prag-
matic concerns. For example, Win32 sup-
port did not require a traditional process
hierarchy, but other environment subsys-
tems (e.g., OS/2 and Posix) did. The NT
executive provides a set of process man-
agement services sufficient for the cur-
rent set of NT personalities, and poten-
tially for others that are similar but not
yet supported (e.g., VMS). Radically dif-
ferent alternatives that would require mod-
ifying the executive are, however, beyond

126 BYTE JANUARY 1994

the scope of NT users.
Because executive components such as
the process manager and the virtual mem-
ory manager run in kernel space (although
they’re not technically part of the kernel),
some critics say NT is more monolithic
than Microsoft likes to admit. However,
while these executive-level resource man-
agers do reside in kernel space, they
nonetheless function as peers and com-
municate by passing
messages just as the user-
level subsystems do.
The NT model is ob-
ject-based, even though
not completely object-
oriented. System re-
sources such as process-
es, threads, and files are
allocated and managed
as objects; each object
type exposes a set of at-
tributes and methods.
User-visible resources in-
cluding windows, menus,
and files are also built on
object foundation. Be-
cause of their status as

Process
manager

Applications, utilities (shell, cc, ..

REPORT

objects, these resources can be named, pro-
tected, and shared. NT distinguishes be-
tween kernel- and executive-level objects.
Kermnel objects have threads, events, inter-
rupts, and queues. Executive objects,
which executive resource managers cre-
ate and manipulate, package the more ba-
sic kemnel objects—adding, for example,
names and security descriptors—and, in
turn, pass them to user-mode subsystems.

Interrupts and Device Drivers in NT
Like other microkernels, the NT kernel
also handles interrupts and context switch-
ing. An interrupt is handled within the ker-
nel and then dispatched to an ISR (interrupt
service routine). The kernel uses an inter-
rupt object to associate an interrupt level
with an ISR; this arrangement conceptually
separates the device drivers from the in-
terrupt hardware. It also leads to a dis-
tinction between NT and most other mi-
crokernels in terms of the I/O subsystem.
In Mach and in Chorus, device drivers re-
side above the kernel and access the hard-
ware entirely through its services. In NT,
the I/0 manager, which includes file sys-
tems, device drivers, and networking sup-
port, generally bypasses the kernel and
works directly with the HAL underneath
the kemnel, Kemnel support is still required
for interrupt processing, but in other re-
spects, drivers work autonomously.
Perazzoli says there are good reasons
to design the device-driver interface this
way. For example, IBM found that it could
not accomplish all device-driver functions
out-of-kemnel and had to find a way to let
parts of drivers run in kernel space. NT
establishes an object-based link to device
drivers for interrupt handling and dispatch
and then lets the drivers work directly with
their associated devices through the HAL.

conntinned

.} and libraries

Key
manager

Chorus nucleus

Chorus/MiX V.4 runs Unix services on top of the Chorus nucleus, in
much the same way OSF/[does with the Mach microkernel.

L]

Microkels

-
| Network
interface

Hardware
Interrupt

The small QNX microkemel is designed to be able to easily

add service modules for specific uses.

Nothing prevents applications vendors
from writing specialized device drivers,
Perazzoli notes, but these must be distinct
from the application and must cooperate
with the NT I/O subsystem. Is that a lim-
itation? Perhaps not, in view of the im-
pressive I/O performance NT has shown in
benchmark tests.

AT&T and the Chorus Nucleus

The Chorus microkernel resembles IBM’s
and OSF’s implementations of Mach in
many respects. Like Mach, it takes a min-
imalist approach. Chorus includes support
for distributed processors, multiple dis-
tributed operating-system servers (much
like the Mach-OSF/1 combination), mem-
ory management, and interrupt handling. 1t
can also communicate transparently with
other instances of the Chorus microker-
nel, making it a good foundation for high-
ly distributed systems.

There are several implementations of
the Chorus nucleus microkernel. Cho-
rus/MiX, the version of the Chorus oper-
ating system with Unix interfaces, includes
separate versions for SVR3.2 and SVR4
compatibility. USL will offer the Cho-
rus/MiX V.4 as a microkernel implemen-
tation of SVR4. USL and Chorus Systeris
plan to work together to develop Cho-
rus/MiX V.4 as the future direction of
Unix. The figure “The Chorus/MiX Struc-
ture” on page 126 shows how Chorus/MiX
V.4 is configured on top of the nucleus
microkernel. Chorus also supports an
SCO-compatible implementation of Cho-
rus/MiX for use specifically on PCs.

The Chorus nucleus does not include
device drivers in the kemel. As with IBM’s
approach, device drivers work through the

A28 BYTE JANUARY (994

Network
manager

Advanced

Systems

kernel to access hardware. Ac-
cording to Michel Gien, gen-
eral manager and director of
R&D for Chorus, this enables a
higher-level component called
the device manager to keep
track of drivers dispersed
throughout distributed systems.

On the Drawing Board

Sun, Apple, and Taligent arc
also moving toward a micro-
kernel-based operating-system
architecture for their respec-
tive platforms. None of these
companies was willing to dis-
cuss its plans in any great de-
tail, but all acknowledge that
microkernel technology is a
crucial ingredient of operat-
ing-system design.

Sun’s SpringOS, which is still in the
design and implementation phase, is in-
corporating a microkernel and making use
of object extensions. While details are
sketchy, it appears that SpringOS will use
a large amount of existing Solaris code,
much in the same way that OSF/1 uses the
existing OSF/1 server. Sun has not yet an-
nounced support for any of the independent
microkernels, and it may be developing
its own. Still less is known of Apple’s and
Taligent's efforts. Although Apple will
have the rights to use the Taligent Oper-
ating Environment, the company is also
rumored to be developing a microkerel
for the Mac System 7.

Microkemels Here and Now

QNX and CTOS are two mature micro-
kernel operating systems that have been
shipping for years. The 8-KB QNX mi-
crokernel handles only process schedul-
ing and dispatch, IPC, interrupt handling,
and low-level network services. It exports
just 14 kernel calls. The compact kernel
can fit entirely in the internal cache of
some processors, such as the Intel 486.

A minimal QNX system can be built by
adding a process manager, which creates
and manages processes and process mem-
ory. To make a QNX system usable out-
side of an embedded or diskless system,
add a file system and device manager.
These managers run outside of kernel
space, so the kernel remains small. QNX
Software claims that this message-pass-
ing system has performance at least com-
parable to that of other traditional operat-
ing systems.

CTOS, introduced in 1980, was written

SPECIAL Ol:)el'{llillg REPORT

for Convergent Technologies workstations,
a family of Intel-based machines built to
run in “cluster networks™ linked by ordi-
nary telephone wire. Now sold by Unisys,
these CTOS-based machines were demon-
strating the benefits of message-based dis-
tributed computing long before the term
became fashionable. The tiny 4-KB CTOS
microkernel concerns itself only with
process scheduling and dispatch and mes-
sage-based IPC. All other system services
communicate with the microkernel and
with each other through well-defined mes-
sage interfaces.

Networking is integral to CTOS work-
stations and effectively transparent to ap-
plications, which do not need to know
whether a request for service will be han-
dled locally or remotely. The same mes-
sage-based IPC transmits the request in ei-
ther case. Building modular system services
to service such requests is straightforward.
One practical result has been that CTOS
applications running unattended in remote
branch offices are easily controlled by cen-
tral management tools.

The Microkernel Advantage

If you’re charting the enterprise computing
strategy for your organization, you've got
to be excited about the trend toward micro-
kernel-based operating systems. Increas-
ingly, you will be able to match kernel-
independent networking, security, data-
base, and other services to your available
hardware, and customize systems for in-
dividual user’s needs.

Of course, end users don’t care much
about how operating systems work, they
just want to run the applications that enable
them to do their jobs. Will microkernels
influence end-user computing? You bet.
By abstracting application-level interfaces
away from underlying operating systems,
microkernels help ensure that an invest-
ment in applications will last for years to
come, even as operating systems and
processors come and go.

The full benefits of microkernels won’t
be apparent for years. It will take that long
to field the operating systems and for use-
ful add-on modules to appear. Some ben-
efits (e.g., quality and robustness) may
never be directly apparent to users. How-
ever, it's clear that microkernels are here to
stay. m

Peter D. Varhol is an assistant professor of
Computer Science and Mathematics at Rivier
College in New Hampshire. He can be reached
on the Internet or BIX at pvarhol @ bix.com.

SPECIAL

Oper
Systems

Advanced
ating

REPORT

The Chorus Microkernel

Amid all the hype about microkernel-based operating systems, don’t overlook Chorus/MiX, a commercially
proven Unix variant from France that offers a number of enhanced features

DICK POUNTAIN

ife has never been tough-
er for operating-system
designers. Any operating sys-
tem that aspires to cope with
all the directions computing
will take in the coming decade
needs to fulfill a formidable
wish list—multitasking, net-
working, fault tolerance, sym-
metric multiprocessing, and
massive parallelism—while
maintaining binary compati-
bility with industry-standard
software across heterogeneous
distributed platforms. Oh, and
would it also support object
orientation, please? As daunt-
ing as all this sounds, however,
there’s an existing, commer-
cially proven operating system
that supports all these features.
It’s made in France, and it’s
called Chorus/MiX.
Chorus/MiX is a microker-
nel-based, distributed Unix op-
erating system that grew out of
research into packet-switched
networks in the late 1970s at
INRIA (Institut National de
Récherche en Informatique et
Automatique), a government-
funded laboratory in suburban
Paris. In 13 years of develop-
ment, Chorus has passed
through four major versions
and has absorbed key concepts
from all the most important
academic research projects in
the distributed-systems field.
Message passing was influ-
enced by Stanford University’s
System V, threads and distrib-
uted virtual memory by Came-
gie Mellon University’s Mach,
and network addressing by Am-
sterdam University's Amoeba.

In 1982, version O of Cho-
rus established the basic prin-
ciple of a small distributed ker-
nel (called the nucleus) that
directly supports IPC (inter-
process communications). By
1986 the Chorus team had spun
off from INRIA into a new
company, Chorus Systémes
(now Chorus Systems), to ex-
ploit Chorus in the commercial
arena. The current product,
Chorus/MiX, is based on ver-
sion 3 of the Chorus nucleus.
It presents a standard, 100 per-
cent binary-compatible Unix
System V release 3.2 or SVR4
interface with added real-time
and multithreading features.

Chorus has met with con-
siderable success in its home
country; communications gi-
ant Alcatel, France's equiva-
lent to AT&T, has just adopted
it as the standard operating
system for all its future PBX
equipment. More recently,
Chorus has started to attract at-
tention in the U.S., announc-
ing deals with Unisys, Tandem,
Cray Research, The Santa Cruz
Operation, and Unix Systems
Laboratories. It is available for
a wide range of hardware, from
the Intel 80x86 family to the
Inmos Transputer, and Mo-
torola has recently announced
the development of a RISC
chip in the PowerPC family
that will have the Chorus nu-
cleus *on-chip” for embedded
applications.

Chorus Basics
Chorus systems are built on a
tiny nucleus (typically only 50

to 60 KB in size) that handles
scheduling, memory manage-
ment, real-time events, and
communications. Everything
else in the operating system is
a server that sits on top of the
nucleus and communicates
with it by passing messages.
File managers, stream and
socket managers, and even de-
vice drivers are all treated as
servers; a group of such servers
is called a subsystem. In the
case of Chorus/MiX, the com-
plete Unix V implementation
is such a subsystem (see the
figure “Chorus Nucleus with
Layered Unix Services”).

This extreme modularity
confers many important ad-
vantages. For example, in the
Unix subsystem, only those
servers that are actually being
used need to be loaded into
memory. The ease of substi-
tuting one modular server for
another simplifies the imple-
mentation of fault tolerance and
redundant backup.

The system-level commu-
nications abilities allow easy
distribution of the operating
system by running a separate
nucleus on each processor.
Combining these abilities lets
you build distributed fault-tol-
erant systems that can reconfig-
ure themselves dynamically.

The ability to support con-
ventional operating systems as
subsystems means you could
develop multiple “personali-
ties”—say 0S8/2, Unix, and
Windows—and have them in-
terwork transparently via the
common underlying commu-

nications layer. IBM appears
to be basing its future operat-
ing-system strategy on a simi-
lar idea, implementing it on the
Mach 3.0 microkemel rather
than on Chorus.

Perhaps more important than
these advantages is the fact that
the modular Chorus system can
remain comprehensible and
maintainable even as it grows
very complex. You can write,
test, and debug servers on a
running system in piecemeal
fashion. In contrast, monolith-
ic operating systems that grow
by adding on extra layers tend
to reach a crucial complexity
barrier beyond which they be-
come very difficult to manage.

The Chorus Nucleus

The IPC manager in the Chor-
us nucleus (see the text box

JANUARY 1994 BYTE 131

STEVE LYONS © 1994

Miceokemels

“Inside the Nucleus” below) de-
livers messages between acfors
on the same site, but a network
manager external to the nucle-
us is responsible for keeping
track of ports throughout the
system and for the dirty busi-
ness of network communica-
tions. (For definitions of these
terms, see the text box “A Cho-
rus Lexicon” on page 136.)

At present, the network
manager supports both OSI and
Internet protocols. In addition,
it acts as a communications
server for those special actors
that need to access network
services directly; for all other
actors, IPC is network trans-
parent.

As well as being compact,
the Chorus nucleus is also high-
ly portable to different CPU ar-
chitectures, because only the
supervisor and part of the mem-
ory manager are hardware de-
pendent. Indeed, this isolation
of hardware dependencies is
perhaps the strongest commer-
cial rationale for adopting a mi-

SPECIAL

Advanced
Oper

ating

System's

crokernel approach. Similar
reasoning lies behind the HAL
(hardware abstraction layer)
in Windows NT, which so far
supports Intel, Mips, and DEC
Alpha processors.

Messages and Efficiency
The choice of a message-pass-
ing rather than a shared-mem-
ory paradigm for IPC in Cho-
rus is the key to its elegant ease
of distribution, particularly in
heterogeneous environments
where shared memory can be
a nightmare to implement.
However, message passing has
a reputation for being less ef-
ficient than shared memory,
and since every server in a
Chorus subsystem such as
Unix ultimately relies on IPC
to communicate with other
servers, any message-passing
overhead will have a serious
impact on overall system per-
formance.

Accordingly, Chorus’s de-
signers have made great efforts
to optimize the IPC system.

Chorus messages use a very
simple format—just untyped
strings of contiguous bytes—
and the IPC manager imple-
ments no flow control or secu-
rity checks. System builders
add these facilities at the sub-
system level using the raw ser-
vices provided by the nucleus,
so that their overhead is in-
curred only where necessary.
The RPC (remote procedure
call) mode of communication
employs optimizing algorithms
(or lightweight RPC) that ex-
ploit any locality of client and
server. For example, when both
client and server threads are
executing on the same site, the
IPC manager instructs the
memory manager to move the
message data by simply remap-
ping addresses, without any ac-
tual copying. When copying
between sites does occur, a
copy-on-write scheme ensures
that data is transferred only as
needed. Given a host proces-
sor that provides on-chip com-
munications, such as the Inmos

REPORT

T9000 Transputer, the Chorus
IPC service can be mapped di-
rectly onto the hardware. The
French firm Archipel has done
this for its Volvox range of
massively parallel supercom-
puters.

The nucleus’s supervisor has
also been subject to extensive
optimization, both to improve
performance and to achieve
100 percent binary compatibil-
ity for the Unix subsystem.
Version 2 of Chorus employed
a pure message-passing inter-
face to Unix and required that
all device drivers be part of the
nucleus executing in privileged
mode. All Chorus/Unix pro-
cesses had to contain user-level
stubs to convert system calls
into messages; this altered the
memory map and spoiled Unix
binary compatibility.

Version 3 of Chorus, there-
fore, introduced a new class
of entities, called supervisor
actors, that execute in the su-
pervisor's address space in
privileged mode but are still

INSIDE THE NUCLEUS

The Chorus nucleus is divided into four functional parts:

132 BYTE

The multitasking real-time executive
allocates local processors and schedules

The Four-Part Nucleus

IPC
manager

 Portable

 Real-time
-executive
k7 manager

- Portable Portable

Hardware

The real-time executive and the IPC manager are fully
portable. The supervisor, like NT's HAL (hardware
abstraction layer), Is fully machine-dependent. The
memory manager s partly portable, partly machine-
dependent.

JANUARY 1994

Virtual
memory

threads using a priority-based preemp-
tive scheme (or, optionally, by time
slicing). The executive’s program-
ming interface provides primitives
for thread creation and destruction,
as well as synchronization via
semaphores, spin locks, mutexes, or
condition variables. Here, as else-
where, the Chorus philosophy is to
provide a variety of efficient but
low-level mechanisms, leaving the
choice of performance trade-offs to
the (sub)system builder.

The memory manager supports
distributed virtual memory. The
basic unit of stored data is a seg-
ment that normally exists on some
form of backing store. The virtual
address space of an actor is divided
into contiguous regions that map a
portion of a segment into physical

memory. System actors called mappers
manage segments, maintaining the co-
herency of distributed shared memory
when different threads access the same
segment concurrently.

The supervisor dispatches interrupts,
exceptions, and traps to dynamically de-
fined device drivers and other real-time
event handlers at run time. Tts response
time is fast enough for Chorus to be ap-
plied in real-time control systems.

The IPC (interprecess communica-
tions) manager delivers messages be-
tween ports throughout the system. Two
communications modes are supported: a
simple, nonblocking, asynchronous
send/receive protocol in which messages
are not acknowledged, and an RPC (re-
mote procedure call) with full client-
server semantics.

Advanced

Operating
Systems

Machino 1

Unix
process

Process
manager

File
manager Device

manager

Ghorus Nucleus with Layered Unix Services

User space

System space

Machina 2

Process
manager

|
i Chorus nuclaus

The modular approach simplifies implementation of fault-tolerant
systems that can reconfigure themselves dynamically. (Figure courtesy of

Chorus Systémes)

compiled and loaded as sepa-
rate modules. Supervisor ac-
tors, alone among Chorus ob-
Jects, are granted direct access
to the hardware event facilities,
and they can install threads
(called connected handlers)
that are called directly by nu-
cleus code, like parameterized
subroutines, and then return
control to the nucleus.

Connected handlers provide
a conventional system-trap
(rather than message-passing)
interface to the nucleus, thus
restoring Unix binary compat-
ibility. Their judicious use
greatly reduces interrupt re-
sponse time and enables device
drivers to be implemented en-
tirely outside the nucleus. You
don’t need to modify the nu-
cleus to accommodate new de-
vice types, and drivers can be
dynamically loaded and de-
stroyed with no loss of inter-
rupt response. While Chorus
adheres to its elegant theoreti-
cal principles for the most part,
it is pragmatic enough to relax
them when performance re-
quires it.

2134 BYTE JANUARY 1994

Ports and Port Groups
A Chorus port represents both
a resource (i.e., a queue of mes-
sages waiting to be consumed
by one or more threads) and an
address to which messages can
be sent. Many threads within
an actor can use the
same port, so you can
improve the perfor-
mance on a multipro-
cessor machine, trans-
parently to the existing
clients, by adding more
processors. Ports can
also be dynamically mi-
grated to a succession of
different actors, which
provides the basis for
Chorus’s run-time re-
configuration abilities.
Chorus can assemble
a number of ports into
a named port group,
which introduces an ex-
tra level of indirection
into communications.
Messages sent to a port
group are “multicast” to
all its members; since

time, this provides a powerful
mechanism for the dynamic
binding of messages. Before
examining groups further, I
need to explain a little about
naming objects in Chorus.

Chorus employs a single,
global name space with names
that are usable at any level,
from nucleus to application.
This contrasts with systems
such as the DNS (Domain
Name System) servers used
under TCP/IP on the Internet,
in which names are local to
each site and a central name
server routes messages. Cho-
rus’s name management is
fully distributed, which re-
moves a potential point of fail-
ure in the name server and
makes it easier to achieve high-
reliability systems.

Chorus generates names
called Uls (unique identifiers)
for all actors, virtual memory
segments, and IPC addresses
(i.e., ports and port groups), in
such a way that the Uls are
unique in both time and space;
no two objects in a distributed
Chorus system will ever use
the same UI for as long as the
life of the system.

Uls are 128-bit quantities
formed by concatenating a site

Basic Chorus Abstractions

REPORT

number, which records the
birthplace of the object, with a
“stamp” chosen from a very
large, sparse random-number
space. If you need to build a
gateway from one distributed
Chorus system to another, you
can preface each system’s Uls
with an extra domain name
identifying the system.

Chorus supplies the raw
means for protecting names, al-
though the actual protection
policies must be implemented
in subsystems. Objects creat-
ed by external servers (e.g.,
segments) rather than by the
nucleus are named by global
capabilities constructed by
combining the UI of a port of
the server that manages the ob-
Jject with a 64-bit key that holds
access control information.
Protection in Chorus can be
summed up by the following
three rules:

1. Only possession of a port
gives the right to receive on it.
Ports cannot be shared between
actors.

2. Only knowledge of the name
of a port or port group gives
the right to transmit to it. The
knowledge of names is pro-
tected against forgery by the

Port

Message

Threads and messages work much as you'd expect if you're familiar with Mach
or Windows NT, and you won't go far wrong if you think of actors as the Mach or

the membership of the nT equivalents of processes. Port groups introduce a muliicast capability that's a
group can change over powerfil mechanism for dynamic binding of messages.

’_.-.. -!;l'. B :.
- N

Microeel
A Chorus Lexicon

Actor. The equivalent of a
Unix process; it provides an
execution context for one or
more threads. An actor is
the unit of distribution in
Chorus, the smallest soft-
ware entity that can be allo-
cated to a site. It is not the
smallest unit that can be al-
located to an individual
processor, however; Chorus
can allocate the individual
threads within an actor to
different processors on a
multiprocessor site, so that
Chorus supports tightly
coupled parallel computers
as well as loosely coupled
networked computers.

Ports. Queues attached to
actors by which threads of
one actor send messages to
threads of another. Sending
messages via ports rather
than directly to the other
thread decouples communi-
cation from execution, so
communication in Chorus
becomes transparent with
respect to distribution; one
thread need not know where
another is executing in or-
der to communicate with it.
A thread can only ever be-
long to one actor, but a port
can migrate from one actor
to another, redirecting all
messages to the new actor.

Site. The basic unit of com-
puting hardware under Cho-
rus, consisting of one or
more processors and some
memory and 1/0 devices. It
might be a whole computer
or just a board in a rack.
Each site runs one nucleus.

Thread. The unit of execu-
tion in Chorus. It has the
same meaning (i.e., a light-
weight process) as it does in
Windows NT and 0S8/2.
Unlike a heavyweight Unix
process, a thread does not
need a private address space
but only its own stack, and
many threads can share the
same address space. Under
Chorus, that address space
belongs to an actor.

136 BYTE JANUARY 1994

Oper

Systeimmns

sparse and random nature of
name generation.

3. Only knowledge of the key
of a port group gives the right
to update it (i.e., to insert or re-
move ports).

The Chorus IPC system also
supports authentication, issu-
ing to every new actor and port
a protection identifier that can-
not be altered except by a spe-
cial superuser. Every message
is stamped with the identifiers
of its sender actor and port. The
receiver can read, but not mod-
ify, this stamp and apply its
own authentication policies
(e.g., traditional Unix file per-
missions).

The UI of a port group
names all the ports in the group
so that when a thread sends a
message to that U, the mes-
sage will be received by every
port in the group. A newly
created port group is just an

.empty UL into which ports can

be inserted and removed dy-
namically. A port can belong
to more than one group at the
same time.

This group concept is very
important to Chorus, because
the group UI provides a single
stable name for what might be
a changing group of entities.
In effect, a group UI names a
system service rather than the
actual servers that provide the
service.

Groups permit a degree of
immortality, because they per-
sist even after the ports they
contain have terminated. This
property allows failed servers
to be dynamically replaced
(i.e., hot reconfiguration) with-
out disrupting any transactions
in progress.

Take, for example, a RAID-
style file server built from a
bank of drives. Each drive’s
server will have one or more
ports by which actors else-
where in the system can ex-
change data with it. If these
ports are all inserted into a sin-
gle group and remote threads
send messages to the group
rather than to the individual

Advanced
atinng

ports, you can replace a failed
drive with a backup unit, and
programs that are running will
never notice any difference.

Objects Are COOL
With Unix pretty well tamed,
Chorus Systems has turned its
attention to object orientation.
COOL (Chorus Object-Orient-
ed Layer) is an ongoing re-
search project, now into its sec-
ond iteration, being carried out
with INRIA and two European
Esprit projects. COOL-2 de-
fines three layers that sit on top
of the Chorus nucleus.
COOL-base, the first layer,
encapsulates the Chorus nu-
cleus to present a new object-
oriented microkernel with a
system-call interface. COOL-
base deals with abstractions
called clusters, which are sim-

‘ply collections of virtual mem-

ory regions mapped into an
address space. From a higher-
level viewpoint, clusters are the
places where objects exist. The
COOL-base layer manages
clusters, mapping them into
multiple address spaces to pro-
duce distributed cluster spaces.
Clusters are the units of per-
sistence and are subject to gar-
bage collection.

On top of COOL-base lies
the GRT (generic run-time)
layer, which provides support
for finer-grained objects with-
in clusters. In particular, the
GRT provides for object exe-
cution, virtual object memory,
a single-level persistent object
store similar in concept to that
used in Apple’s Newton archi-
tecture, interobject communi-
cations based on nucleus RPC,
and a protection subsystem to
enforce protection of objects
during application execution.

The final layer is the lan-
guage-specific run-time layer,
which maps the object model
of particular programming
languages, such as C++ or
Smalltalk, onto the GRT’s ab-
stractions. This layer uses pre-
processors to generate an upcall
table for every type of object
created at the GRT level,

REPORT

through which the GRT can
call to obtain language-specif-
ic information about the se-
mantics of certain operations.
For example, it could find out
how to convert in-memory
object pointers to persistent
pointers for storage, or how to
handle method dispatch. This
mechanism will enable COOL
to support many different OOP
(object-oriented programming)
languages with reasonable ef-
ficiency.

The toughest outstanding
problem in COOL right now is
how to group objects that in-
voke one another into the same
cluster, so as to maximize effi-
ciency. Current versions do this
statically, scanning the source
code for object interactions, but
the long-term plan is to inves-
tigate dynamic clustering based
on the run-time execution pat-
terns of objects.

When COOL makes it to
product status, then Chorus,
alone among current operating
systems, will be able to claim
that it can handle every item
on that wish list at the begin-
ning of this article. It's begin-
ning to look as though Taligent
(the IBM/Apple joint venture)
and Microsoft may be busy
reinventing wheels that they
could have bought on a shop-
ping trip to Paris. B

Dick Pountain is a BYTE contribut-
ing editor based in London. He spe-
cializes in programming languages
and system architectures. You can
reach him on the Interner or BIX at
dickp@bix.com.

About the Company

Chorus Systems

6 Avenue Gustave Eiffel
F-78182
Saint-Quentin-en-Yvelines
Cedex, France

+33 1 30648200

fax: +33 1 30570066
Circle 1090 on Inquiry Card.

Chorus Systems, Inc.
15262 Northwest
Greenbrier Pkwy.
Beaverton, OR 97006
(503) 690-2300

fax: (503) 690-2320
Circle 1091 on Inquiry Card.

Advanced

SPECIAL NS Y3 PIEits¥ry

REPORT

Syvstems

Objects on the Mare

PETER WAYNER

icrokernel technolo-
gy lays a foundation
for modular systems
that can evolve in an
orderly manner, but it doesn’t guaran-
tee results. For example, you could ar-
gue, with some justification, that MS-
DOS already is a microkernel to which
users add extensions such as network-
ing and Windows. Of course, redefining
DOS in this way doesn’t sweep away
the instabilities and conflicts that arise
when you pile on arbitrary mixtures of
TSR programs, device drivers, and
memory managers. Similarly, Macin-
tosh users find that INITs and other system extensions of-
ten lead to trouble.

Clearly what’s needed is an object-oriented approach
to the design of operating systems—one that lends disci-
pline to the process of adding modular extensions to a
small kernel. Microsoft, Apple, IBM, Novell/USL (Unix
Systems Laboratories), and Sun Microsystems are all mov-
ing their operating systems in this direction. Taligent, the
IBM/Apple joint venture, hopes to leapfrog everybody
else with its from-scratch object-oriented operating sys-
tem. Next, meanwhile, ships Motorola and Intel versions
of NextStep, the most advanced microkernel-based and
object-oriented operating system available. NextStep lacks
the bottom-to-top object orientation that will be Taligent’s
hallmark, but at least it’s available today.

Fully object-oriented operating systems will appeal
strongly to systems programmers and users alike. At the
system level, objects will enable programmers to dig deeply
into the depths of the operating system to customize it to
their needs, without disrupting system integrity. At the ap-
plication level, users will find that they can mix and match
features and accessories.

Objects also pave the road to distributed computing.
Objects are units of code and data that communicate by
sending and receiving messages. When built correctly, the
objects in a system are highly interchangeable, and it can
be a relatively straightforward task to swap remote ob-
jects for local objects and thereby extend object commu-
nication across a network. Programmers must compensate
for the latency inherent in such a distributed system, but
that’s not the hardest problem that these systems intro-
duce. The tough nut to crack will be uniform directory

.

-

"

1

[et
1

services that enable pro-
grammers to name and
search for objects on a net-
work that may be scattered
worldwide.

The seamless nature of
object systems will radically
alter the way we think about
where our data is. Data will
be encapsulated in objects
that will in some cases be
able to roam to where they
are most needed. We are
in the habit of thinking that
adocument is simply stored
on a particular hard disk.

help the next
generation of

evolve in an

the network

Object-oriented

technologies will

operating systems

orderly way and
reach out across

Distributed object systems
will ask us to surrender that comfortable certainty in ex-
change for the power and flexibility of location-transpar-
ent storage.

If we're to entrust our data to object systems, we’ll have
to be sure they can handle it securely. What's to prevent a
malicious user from forging messages to access informa-
tion? The next generation of operating systems will in-
clude cryptographic protocols that will enable objects to
authenticate messages. Complete object systems will also
have to provide ways to authorize some forms of inter-
object communication while denying others.

All this won’t happen overnight; it’s going to be a long,
evolutionary process. But it’s important to understand how
the technologies available today and those available in
the near future—Microsoft’s OLE; the OpenDoc standard

JANUARY 1994 BYTE 139

STEVE LYONS © 1994

Objects

from Apple, IBM, WordPerfect, Novell,
and Borland; IBM's DSOM (Distributed
System Object Model): Next’s PDO
(Portable Distributed Objects); and Tali-
gent’s frameworks—will prepare users for
life in a world of distributed objects.

The Evolution of Microsoft's OLE
Applications at the top of the object food
chain will be most users’ first taste of these
emerging object systems. For Windows
users, that means applications that use Mi-
crosoft’s OLE technology. With the first
version of OLE, which debuted with Win-
dows 3.1, users could insert objects into
client documents. Those objects referred to
(in the case of linking) or contained (in
the case of embedding) data in a format
recognized by server applications. Users
double-clicked on the objects to launch
the server applications and transfer data
to them for editing.

OLE 2.0, available now as a Windows
3.1 extension, redefines the client docu-
ment as a container. When a user double-
clicks on an OLE 2.0 object that’s been
inserted into a container document, it can
be activated in place. Suppose, for exam-
ple, that the container is a Microsoft Word
6.0 document and the inserted object rep-
resents a range of cells in Excel 5.0 for-
mat. When you double-click on the spread-
sheet object, Word’s menus and frame
controls magically become those of Ex-
cel. In effect, the word processor becomes
a spreadsheet while the contained spread-
sheet object has focus.

Clearly, the user benefits from this com-
pound document model, but for program-
mers, OLE 2.0 requires a radical mind
shift. They’re used to writing applications
that can, to a large extent, control the user
interface. Under OLE 2.0 or similar sys-
tems, the programmer

SPECTALNBZJISTCILFEREEF:S

Advanced

Systems

teresting and useful ways.

The root interface supported by all OLE
2.0 objects is called IUnknown. It provides
a method, Querylnterface, that describes
other, more specialized interfaces sup-
ported by each object. To inquire about
one of these, your program consults Query-
Interface, which supplies the name of the
interface. How do you know which names
to inquire about? They’re listed in the sys-
tem registry.

When you call through an interface to
the methods it supports, you’re using a
virtual function table, or vtable, that is
quite similar to the vtables generated by
C++ compilers. But while the structures
generated by C++ compilers can differ
from machine to machine and from com-
piler to compiler, OLE's vtables present
a standard, well-known mechanism.

The similarity to C++ does mean, how-
ever, that OLE 2.0 is much easier to use in
C++ than in any other language. Calling
OLE 2.0 objects from C, for example, re-
quires substantial effort. You have to cre-
ate and initialize vtables explicitly, dupli-
cating work that’s done automatically by a
C++ compiler. The C++ bias of OLE 2.0
stands in sharp contrast to the language
neutrality of IBM's SOM (System Object
Model), the object-dispatch mechanism at
the heart of OpenDoc (see the table “OLE
vs. OpenDoc”).

OLE objects can support a wide range of
interfaces to functions for such things as
memory management, name binding, data
transfer, and object storage. Among the
most important are the interfaces that pro-
vide a common, way for an object to ne-
gotiate with the container for display real
estate in the container’s window and for
storage space in the container’s document.

The infrastructure required to support

REPORT

these complex object interactions is so ex-
tensive that Microsoft has described OLE
2.0 as “one-third of an operating system.”
Object storage, for example, utilizes a doc-
file, which is really a miniature file sys-
tem contained within an ordinary MS-DOS
file. Docfiles provide their own internal
mechanisms f{or subdirectories, locking,
and transaction (i.e., commit/rollback) se-
mantics.

What doesn’t OLE do yet? Networking
is the most glaring omission, and it’s the
top priority for future OLE development.
The next major iteration of OLE will ap-
pear in a distributed, object-based version
of Windows called Cairo, which is due in
1995.

Apple’s OpenDoc

Apple, along with WordPerfect, Novell,
Sun, Xerox, Oracle, IBM, and Taligent—
collectively known as the Component In-
tegration Laboratories—is also pursuing
an object-oriented compound document
architecture called OpenDoc. Designed as
a cross-platform technology, the project
lags behind OLE 2.0 considerably and
won't enter its alpha stage until about the
time this article sees print. Apple expects
to ship beta OpenDoc development kits
this summer, in time for the Apple World-
Wide Developer's Conference.

The core technologies in OpenDoc are
the Bento storage mechanism (named after
the Japanese plates with compartments for
different foods); a scripting technology
that borrows heavily from AppleScript;
and IBM’s SOM. In a Bento document,
each object has a persistent ID that moves
with it from system to system. Storage is
not only transactional as in OLE, but it is
capable of storing and tracking multiple
revisions of each object. If there are several

must build an applica-
tion that’s prepared to
surrender substantial au-

drafts of a document,
only the incremental
changes from one revi-

sion to the next will ac-

tonomy and function as
a cog in a machine. Pro-
grams have to conform
to rigid interfaces in or-
der to interact success-
fully with other objects.
OLE's designers strove
to find the right balance:
The interface had to be
sufficiently rigorous to
ensure trouble-free ob-
ject interaction, yet flex-
ible enough to allow
objects to evolve in in-

OLE VS. OPENDOC
Two models for object-oriented compound documents.
OLE OPENDOC

Openness Controlled by Microsoft. Controlled by the CIL (Component
Integration Lab). Many vendors,
including Apple, Borland, Claris, and
WordPerfect, are participating in the
project.

Language C++-oriented. Language-neutral.

Inheritance Simulated with aggregation. Genuinely supported.

Storage Model Compound file with fransaction
controls.

Gompound file with transaction and
revision controls.

Availabllity
OLE-2.0 capable applicalions are
now shipping.

For programmers, now. For users,

For programmers, alpha and beta
versions will appear during 1994.

140 BYTE JANUARY 1994

tually be stored. The up-
per limit to the number
of extant revisions will
be user-configurable.
This incremental ap-
proach will significant-
ly reduce the disk space
that’s needed to main-
tain multiple revisions
of a document. Because
the Bento system will be
transactional and multi-
user-safe, it will lend it-
self to the development

Objects

SPECIAL BT IiFTatsr:,

Advanced

Systems

To Inherit or Not to Inherit?

The ability of objects to be derived from
and specialize more general objects is
fundamental to any object-oriented sys-
tem. Yet Microsoft deliberately exclud-
ed inheritance from OLE 2.0’s object
model. The problem, according to OLE
developers, is that it's hard to specify a
precise interface between a base object
and a derived one.

For example, suppose an object inher-
its half of its behavior from the operating
system and provides the other half itself.
Now suppose that a new version of the
operating system revises the base object
while preserving its interface. In theory,
the derived object should still work per-
fectly. This is the major selling point for
object-oriented systems. IBM, for ex-
ample, touts SOM (System Object Mod-
el) as a way to achieve binary reuse of
objects.

But there can be hidden pitfalls, say
OLE developers. Suppose the derived
object defines a virtual method that su-
persedes a method in the base object.
Suppose also that the original version of
the base object called this virtual method
once after all its data was initialized.
What if the new base object called the
virtual method before some piece of data
was initialized? The interface wouldn’t
be violated—parameters would still be
passed correctly—but tacit assumptions
made by the derived object’s program-
mer could lead to trouble.

Microsoft therefore came up with the

of collaborative applications. Note that
OLE does not currently support revision
control, although Microsoft says this fea-
ture will appear in Cairo.

OpenDoc’s scripting, which is modeled
on the Mac’s AppleScript, implements a
set of standard verbs that are intended to be
as general as possible. Fourteen core verbs
will apply polymorphically to almost all
applications supporting OpenDoc. A verb
might specify, for example, “move to next
item,” which could mean “move to the
next word™ in a text document and “move
to the next cell” in a spreadsheet.

Apple’s decision to introduce object-
oriented polymorphism to the OpenDoc
scripting language grew out of the com-

142 BYTE JANUARY 1994

notion of aggregation, whereby pro-
grammers must explicitly build in the
pointers from a derived object to a base
object. This approach allows the pro-
grammer to build in controls that would
stop the object from inheriting something
in a dangerous way. The programmer
could, for example, force the derived ob-
ject to check the revision number of the
base object.

In IBM’s SOM, on the other hand, the
dispatcher automatically uses the first in-
stance of a base-class object that it can
find. This approach requires more disci-
pline on the part of programmers, who
must try to ensure that the derived code
they write interacts with base-class ob-
jects from one revision to another.

Apple’s Kurt Piersol is familiar with
this dilemma, because OpenDoc’s ob-
ject model is SOM. He believes, how-
ever, that talented programmers deserve
the freedom that inheritance brings and
can handle the responsibility that it de-
mands. Jim Green, director of the DOE
(Distributed Objects Everywhere) proj-
ect at Sun Microsystems, agrees, and he
notes that Microsoft's is the only object
system that imposes such strictness.

Who’s right? Only time will tell. Ob-
jects are not standard equipment yet.
When there’s a broader base of experi-
ence, we’ll see whether programmers
will run amok with inheritance and come
begging for forgiveness like the prodi-
gal son.

pany’s experience with HyperCard, ac-
cording to OpenDoc developer Kurt Pier-
sol. HyperCard’s XCMD mechanism en-
abled programmers to add arbitrary
commands to the HyperCard scripting lan-
guage. But programmers had to resort to
difficult and inelegant tricks that could
have been avoided if HyperCard’s lan-
guage model had been stronger.

Apple has learned its lesson, says Pier-
sol. Thanks to IBM’s SOM, which is a
language-independent engine that imple-
ments inheritance and method-dispatch-
ing, OpenDoc’s script language will en-
able programmers to write clean, clear
code that makes it much easier to integrate
different applications.

REPORT

The team at Apple plans to make Open-
Doc compatible with Microsoft’s OLE. If
the plan succeeds, the OpenDoc system
will be able to wrap OLE objects with a
layer of message-translation software. An
OpenDoc container would see an embed-
ded OLE object as an OpenDoc object,
and the OLE object would see its contain-
er as an OLE container. Apple says that
the reverse translation should also be pos-
sible. In that scenario, OpenDoc objects
function in OLE containers. The translation
layers are being developed by WordPer-
fect, with help from Borland, Claris, Lotus,
and others.

Can it work? It’s a tall order, but the
fact that both OpenDoc and OLE are built
with object technology makes the notion at
least conceivable. Given that editing a doc-
ument involves universal conventions such
as “save” and “delete,” Microsoft and Ap-
ple are certain to express their interfaces in
similar ways.

Dueling Object Models: SOM and COM
Underlying OLE and OpenDoc are two
competing object models: Microsoft’s
COM (Component Object Model) and
IBM’s SOM. Each defines protocols that
objects use to communicate with one an-
other. How do they differ? Most visibly,
SOM is language-neutral and supports in-
heritance, while COM is strongly biased
toward C++ and eschews inheritance in
favor of an alternative mechanism that Mi-
crosoft calls aggregation. See the text box
“To Inherit or Not to Inherit?” for a sum-
mary of the inheritance/aggregation de-
bate.

IBM first used SOM to support the class
hierarchy of the Workplace Shell in OS/2
2.0. But that's just one application of what
is in fact a fully general system for defin-
ing object hierarchies and invoking object
methods. When one SOM object invokes
another, the SOM run-time engine inter-
cepts the call, locates the target object, ac-
tivates it, and passes parameters in a stan-
dard binary format.

SOM solves a problem that has long
plagued OOP (object-oriented program-
ming) languages. Such language systems
interoperate poorly because no binary
standard supports inheritance and method
dispatching across compilers—never mind
across languages. You can’t take a class
library written in Borland C++ and extend
it using Microsoft C++. Nor can you in-
herit from or extend Borland or Microsoft
class libraries using COBOL, C, or Small-
talk. But you can do all these things if you

SPECGCILAL “qu-. ';l‘_lillz"_:

Objects

make SOM, rather than C++ or some
other OOP language system, respon- ==
sible for inheritance and method dis- |&
patch.

This approach yields another im-
portant benefit: rapid development. I
quit programming with one set of ob-
ject-oriented libraries supplied for the
Mac because I grew tired of waiting
for lengthy compilations whenever I
made the slightest modification to the
root of the class hierarchy. Everything
needed to be recompiled because the
parts were in some way dependent on
the root class.

SOM solves this “fragile base
class” problem, according to IBM, by
eliminating the need to recompile in many
cases. You can add new methods and local
variables to a base class without recom-
piling its derived classes, and the derived
classes can continue to call methods of the
base class as before.

This flexibility is essential if a system is
to be extended cleanly. If you use the sys-
tem’s window object and build your ap-
plication around the features in it, you
don’t want to have to recompile your entire
application when IBM decides to add more
features to the system window object.
SOM ensures that the new features won'’t
get in your way. You may choose to use
them in a later revision of your software,
but there is no need to recompile the soft-

Advanced

Hy:—-al.i-.llle-a

The NextStep interface builder. Visual tools are all the rage,
but Next's are still the best around.

ware to remain compliant with the base
system.

This flexibility does come at a price,
however. Using SOM means that compil-
ers cannot optimize interobject communi-
cations. In conventional OOP implemen-
tations, compilers can sometimes place
small objects in-line, effectively creating
an instance of the object and removing the
interobject communication code. A flexi-
ble object model like SOM must inevitably
trade away such optimizations.

The SOM model was recently extended
to work in a distributed manner on IPX/
SPX, TCP/IP, and NetBIOS networks.
DSOM looks the same as SOM to a pro-
grammer, but the DSOM run-time engine

'

Inheritance v. Aggegation

Inheritance

¥

T}

—— can match up objects with re-
- | quests for their services even
| when those requests reach across
process or machine boundaries.

How will IBM handle the
= naming of objects in a distrib-

uted system? DSOM provides
its own, somewhat limited di-

~ / Baseclass

Base class \

rectory service, but for large-
scale systems IBM plans to rely
{ on the global directory services
of the Open Software Founda-
- | tion’s DCE (Distributed Com-
puting Environment).

Microsoft's COM

[containing containing | a N
BB ethod | “method J (L)4£c]§ozsc(>)ﬁ s(lf((l)M. I:1eveloped fgr
-\ DrawFrame # \ DrawFrame J/ Uy IRCAIES the:Sami pEpt-

{ lems that IBM’s SOM does, yet
| in startlingly different ways. The

most visible difference is that

In both cases, your object passes on calls to draw its frame
to a method called DrawFrame. In the SOM inheritance
model, the ORB (object request broker) vectors the
DrawFrame call directly 1o the base class object where it is
implemented. In the COM aggregation madel, your object
must add to its vtable the necessary pointer to the
DrawFrame method in the base class object.

144 BYTE JANUARY 1994

COM doesn’t explicitly support
inheritance. Instead it offers an-
other mechanism, called aggre-
gation, that requires objects to
explicitly include pointers to ob-
jects higher up in the hierarchy

REPORT

Bl (see the figure “Inheritance vs. Ag-
gregation™).

As an example, imagine you're cre-
ating a spreadsheet object in a docu-
ment, but you want it to have flexi-
i ble column widths instead of the fixed
= columns provided by the standard ob-
i ject. With conventional OOP you’d
8 inherit most capabilities (e.g., formu-
@ latranslation and constraint propaga-
tion) from the base class and then
override the display function to im-
plement variable-width columns. The
compiler in C++, or the SOM run-
time engine in the case of SOM,
would redirect the display calls to your
code while routing other calls to the
ancestral object.

Microsoft’s OLE, however, won’t do
such redirection automatically. You must
explicitly expand your object’s vtable to
include pointers to the reference class. In
Microsoft's terms, you “aggregate”™ the
pointers into your object. Why is this nec-
essary? The QueryInterface method in each
OLE object only knows how to read local
vtables; it can’t search upward through an
inheritance chain, because there isn’t one.

Microsoft’s architects chose this ap-
proach because they thought that it would
be more resistant to the “fragile base class™
problems that emerge when a base class
is redefined. “It is significantly easier for
programmers to not be clear about the ac-
tual interface between a base and derived
class than it is [for them)] to be clear,” says
Bob Atkinson, one of the principal devel-
opers of COM and OLE. “In practice, the
base-derived interface will not be well ar-
ticulated, thus preventing the base-class
provider from revising his product,” he
notes.

But OLE developers didn’t want to rule
out inheritance completely, so they al-
lowed objects to effectively inherit func-
tions by adding them to their internal
dispatch table. In this scenario, the spread-
sheet object you’ve created would contain
your own display functions, along with
pointers to all the functions in the main
spreadsheet object.

The Taligent Revolution
Taligent (Santa Clara, CA) is building a
new, object-oriented operating system
from the bottom up. Everything in the sys-
tem, from device drivers to applications,
will share a common object model. The
company expects that this bold approach
will produce a clean operating system that
will be completely extensible.

continued

?

Objects

Taligent engineers talk obsessively
about frameworks, by which they mean
structures that harness collections of ob-
jects. Conventional frameworks include
Borland’s Object Windows Library, or
OWL, and Apple’s MacApp. These, how-
ever, govern only the creation of applica-
tions that run under Windows and the Mac-
intosh. They include classes for windows,
controls, menus, and other GUI parapher-
nalia. By relying on these frameworks to
handle simple, standard user interactions,
programmers can concentrate on more
complex and application-specific tasks.

Taligent’s frameworks, by contrast, will
reach down into the bowels of the operat-
ing system. But with this unprecedented
freedom will come an equal measure of
responsibility. Programmers will have to
tread carefully: If you want to add a de-
rived class that takes control of a certain
feature of the system, you have to be sure
not to violate any of the assumptions built
into the base class.

This principle holds true for any oper-
ating system, of course, but I have always
found programming in frameworks to be
like writing sonnets: There are many pos-
sible themes, but there are also some rules
that just cannot be broken. Nevertheless,
Taligent’s radical openness and mallea-
bility are alluring.

Complicating the future of Taligent is
the company’s relationship with its par-
ents, IBM and Apple. Taligent plans to
release in 1996 its own operating system,
which shares IBM’s SOM and its micro-
kernel. But the company also plans to re-
lease a personality module that sits in
IBM’s Workplace OS milieu. It is not clear
yet whether, or how, Apple intends to
move the Taligent technology onto the
Macintosh platform.

Next Got There First

The furor surrounding the object-orient-
ed futures of Microsoft, Apple, IBM, and
Taligent can obscure the fact that NextStep
delivers many of the same benefits today.
It allows you to spin together reusable ob-
jects to build a slick user interface in no
time flat (see the screen on page 144), and
Next supplies powerful frameworks for
database and 3-D graphics work.

Over the last five years, NextStep’s per-
formance has improved dramatically, says
Avadis Tevanian, manager of Next’s RISC
business unit. A key challenge for devel-
opers was to optimize memory allocation
so that objects were kept together in mem-
ory. Early versions of the system swapped

148 BYTE JANUARY 1994

Advanced

Systems

excessively because they couldn’t achieve
locality of reference with respect to ob-
jects.

The NextStep compiler now also per-
forms some object-level optimizations.
Each method is assigned a unique num-
ber, and objects can invoke a method by
number rather than by name. This ap-
proach speeds up context switching and
makes NextStep extremely responsive to
the user.

NextStep also tackles the problem of
distributing objects across a network. A
technology called Distributed Objects sim-
plifies the task of creating systems of ob-
jects that communicate across a network.
A programmer makes an object available
throughout the network by vending it—
that is, registering its name in the Network
Name Service. Programmers who use Dis-
tributed Objects can avoid dealing with
the lowest level of interaction with Mach,
the network, and RPCs (remote procedure
calls).

Next is now making Distributed Ob-
jects available on other operating systems,
in a form called PDO—Portable Distrib-
uted Objects. PDO for HP-UX, which
shipped in mid-November, contains the
Objective C language compiler (i.e., the
language in which NextStep objects are
written) as well as code for handling dis-
tributed object requests. Next intends to
ship PDOs for Data General, NCR, and
other Unix platforms and eventually non-
Unix operating systems, possibly including
Windows NT.

Does the requirement to use Objective C
limit the appeal of PDO? Not according
to Ricardo Parada, software engineer with
Pencom Software. “Nothing beats Objec-
tive C for objects,” he says. “NextStep is
the platform that made me see that C++
is not good enough for OOP.”

At press time, Next and SunSoft an-
nounced a joint licensing agreement that
will marry Sun’s developing object tech-
nology with the NextStep application en-
vironment. Next will freely publish a spec-
ification describing OpenStep, an operating
system—independent software layer en-
compassing NextStep APIs and applica-
tion frameworks. Sun will license the
OpenStep application layer from Next,
along with development tools including
Interface Builder, and will make these stan-
dard parts of Solaris. The OpenStep spec-
ification will be written in terms of Ob-
jective C, but it can also be implemented in
C++. “We’ve been investing for three
years building low-level object plumbing,”

SPECIAL ()l)eralillg REPORT

said Sun chairman and CEO Scott Mc-
Nealy at the joint announcement. “Open-
Step gives us the application framework
we need to layer on top of that plumbing.”
In exchange for OpenStep, Sun will li-
cense that object plumbing to Next.

The CORBA Connection

Hewlett-Packard, Sun Microsystems, and
DEC began experimenting with objects
long ago. These companies have now
joined with many others to fund an indus-
trywide coalition known as the OMG (Ob-
Jject Management Group), which develops
standards for object exchange. The OMG’s
CORBA (Common Object Request Broker
Architecture) lays the groundwork for dis-
tributed computing with portable objects.
CORBA defines how objects locate other
objects and invoke their methods.

If this sounds strikingly similar to IBM’s
SOM, it should. SOM is CORBA compli-
ant. If you’re using DSOM under OS/2 (or
AIX), you'll be able to invoke CORBA-
compliant objects running on HP's, Sun’s,
or other architectures. Does this mean you
will be able to edit an OpenDoc object cre-
ated on the Macintosh from within a con-
tainer document on a RISC workstation?
Probably not. CORBA can guarantee only
a low-level mechanism by which objects
can invoke other objects. To interact suc-
cessfully, the two objects also have to un-
derstand each other’s messages.

The OMG hopes to synchronize the ef-
forts of many leading workstation ven-
dors. SunSoft, for instance, is working
with the OMG to transform much of its
technology into open standards. SunSoft’s
work in the realm of distributed objects
has yielded a series of Solaris extensions
that have been incorporated into the Com-
mon Object Services Specification, or
COSS, which are now approved as OMG
standards.

The naming service links an object to
a human-readable name that a program-
mer or system can use to find the object on
a network. The event notification service,
which enables objects to synchronize their
operations, supports client/server or peer-
to-peer interaction. The association ser-
vice joins objects together into collections.
The properties service lets anyone bind
annotations to objects. This object-level
graffiti could support store-and-forward
messaging or store configuration data.

Security in a World of Distributed Objects
The more that we link our computers to-
gether, the more difficult our security prob-

g SPECIALNBSZISISILFTALS -y

Advanced

Systems

dled in Apple’s latest revision of
the Macintosh operating system,
called System 7 Pro. Apple is rec-
ommending that all users in net-
| worked environments shift over

to this version because it offers
1 a variety of options for building

| collaborative environments. The
security provisions take two dif-
|| ferent forms: digital signatures

~ Object -

- \a message

T 5,‘13-.'.-' T

Object %

.| and secure collaborative sessions.
| Digital signatures are generat-
ed with an RSA algorithm. When

S e _{ you join the network, a pair of
9 9 | keys, one public and one private,

| are issued in your name. When
you want to “sign” a document,

In a CORBA environment, ORBs ensure that only
authorized objects can transmit messages. The access table

specifies which connections are permitted.

lems become. The inherent flexibility of
distributed object systems brings new se-
curity challenges. Designers want to make
it easy for one object to call another object,
even if the two occupy different address
spaces, ZIP codes, and time zones. Speedy
communication is critical.

Unfortunately, security gets in the way.
There are strong mathematical algorithms
for sealing messages from prying eyes and
proving that the identity of an object or a
person is authentic. But the problem is that
these algorithms chew up compute cycles.
That’s acceptable on an occasional basis—
say, once per log-in session—but too bur-
densome if every object call needs to pay
this extra computational price.

Emerging solutions take two basic
forms. Novell and Apple are concentrating
on public-key algorithms based on patents
held by RSA Data Security (Redwood
City, CA) and Public Key Partners (Sun-
nyvale, CA). In these systems, keys come
in pairs. One is published while the other
is kept private to the owner. A central au-
thority dispenses public keys to users.

The other common method, which is
used by Apple, IBM, DEC, and many oth-
er Unix manufacturers, is based on the
Kerberos system developed at MIT dur-
ing the 1980s. This system is based com-
pletely on private keys that are dispensed
by a central, trusted authority. In this case,
though, the central authority must provide
a new key whenever a secure link between
two entities must be generated. In public-
key systems, the central authority is con-
sulted only when two computers first com-
municate.

The latest security provisions come bun-

A50 BYTIE JANUARY 1994

you drop it onto the DigiSign pro-
gram. This action will fetch your
private key from disk, where it is
kept in encrypted form. You type
in a password that decrypts the private key
(which is too long for a user to remem-
ber), and a signature is then generated and
attached to the document’s resource fork.

Apple hopes that this technology will
reduce the flow of paper in offices. If you
want to question the veracity of a signature,
you ask the central authority for the per-
son’s public key. It will verify signatures
generated with the corresponding private
key. The only way that someone can forge
a signature is by obtaining the private key
or the password. Apple has designed the al-
gorithm so the private key is held in mem-
ory in unencrypted form only for as long as
it’s needed.

Object-Based Security

IBM is working with the OMG and with
other companies to add a layer of security
software on top of the SOM and DSOM
object managers. The challenge is to ensure
that messages can reach objects only when
the sender has the appropriate authoriza-
tion. The goal is to provide a secure stan-
dard that meets or exceeds the Orange
Book criteria formulated by the National
Security Agency.

IBM’s approach is to delegate authen-
tication work to the ORBs (object request
brokers) that make connections between
the objects over the network (see the figure
“Object-Based Security”). While it’s pos-
sible to add a layer of protection to the ob-
jects themselves, this severely constrains
an object’s reusability in applications that
do not require security. IBM plans to em-
bed access control in the ORB, which will
filter out unauthorized requests. Program-
mers can then create objects without wor-

REPORT

rying about security precautions.

Secure ORBs will maintain access ta-
bles that control which outside objects can
access objects under its control. The ORB
will be able to check the identity of the
message sender by using public-key algo-
rithms. It will also negotiate keys for en-
crypting messages. Messages will be de-
crypted before they are passed to their
target objects.

Windows NT takes a similar approach
with its built-in security. Each object’s
creator sets its access privileges. The object
broker in the kernel controls the connec-
tions so that only authorized messages get
through.

The U.S. government issues standards
that specify degrees of security. At level
C2, for example, a system guarantees that
any object can be made secure at the dis-
cretion of its creator. Windows NT sys-
tems can be made C2-secure because all
interactions must pass through the object
dispatcher. The simplicity of the model
makes it possible to analyze the system
and ensure that there are no “trapdoors”
available for anyone to exploit. Sun Mi-
crosystems, HP, and DEC also produce
operating systems that are C2-secure or
better.

Objects Are Closer Than They Appear

The transition to object-oriented operat-
ing systems will dominate the rest of this
century. Programmers will need to rewrite
huge quantities of code to exploit the ben-
efits of these new systems.

The OLE 2.0-compatible applications
that are now emerging are an important
first step. OLE 2.0 is the carrot and stick
that Microsoft hopes will ensure a supply
of applications for Cairo when it emerges.
The members of the OpenDoc consortium
are pursuing a similar strategy that, unlike
OLE 2.0, is not tightly coupled to the Win-
dows platform. And Unix vendors, always
advanced in their network orientation, are
rapidly converging on interoperable COR-
BA-compliant distributed object systems.

Not everything must be described in the
future tense, however, IBM’s CORBA-
compliant DSOM toolkit is shipping now,
as is Next’s PDO. Adventurous and for-
ward-looking developers can today ex-
plore the kinds of object technologies that
will appear on the mainstream platforms of
tomorrow.

Peter Wayner is a BYTE consulting editor based
in Baltimore, Maryland. He can be reached on
the Internet or BIX at pwayner@bix.com.

SPECIAL B.CeRF:te ettt

REPORT

Opreratings

Systems

Personality Plus

FRANK HAYES

he new breed of operating

systems won’t just do the

same old things better. In-

stead, they’ll offer capabil-
ities that we’ve never expected before.
Some of these (e.g., microkernels and
objects) will live deep in the bowels of
the systems, and users may never know
they exist. But one new capability will
affect almost every desktop computer
user: the ability to run foreign applica-
tions.

Currently, add-on software lets Mac
and Unix users run DOS and Windows
applications. But in the generation of
operating systems now emerging, the ability to run for-
eign software will be a standard part of the system and
will work well. Your choice of operating system will no
longer drastically limit your choice of applications. The
collision of user interfaces that occurs when Mac, Win-
dows, and Unix applications all share the same screen will
take some getting used to. Still, multiple operating-sys-
tem personalities are here to stay, and soon they’ll be as
standard as mice and menus.

What won’t be standard, though, is the way in which
operating systems implement their ability to run nonna-
tive applications. OS/2, Windows NT, Unix, Workplace
08, and the Mac will all take distinctively different tacks.
These differences will affect how well you are able to take
advantage of the wider range of applications that the extra
personalities will support.

There are two competing sets of requirements. The mis-
sion of a foreign personality is to run existing applica-
tions, so it must support them as fully and faithfully as
possible. But the needs of those applications may conflict
with the design of an advanced operating system. Spe-
cialized device drivers may be at odds with the need for
security. Memory management schemes and windowing
systems may conflict. Business issues (e.g., the cost of li-
censing code and threats of legal action) also affect the
design of foreign personalities. But the biggest potential is-
sue is performance: A personality must run applications at
an acceptable speed.

The Emulation Equation
For one computer to run software intended for another
(e.g., a Mac running DOS software), the computer must

perform instructions that it
doesn’t natively understand.
For example, a Mac’s 680x0
processor must execute bi-
nary code that was intended
for a PC’s 80x86 CPU. The
80x86 comes with its own in-
struction decoder, registers,
and internal architecture; it
executes each instruction
through hard-wired circuitry
or by executing a microcode

Windows and
Macintosh

routine within the CPU. the game is
The 680x0 doesn’t under- i Itinl

stand 80x86 code, so typ- muitipie

ically it has to collect each pers onalities”

instruction, decode it to de-
termine.what it’s intended to

The ability to run

software is the
order of the day,
and the name of

do, and perform the equiva-
lent routine using external 680x0 code rather than internal
microcode. Because the 680x0 also doesn’t come equipped
with exactly the same registers, flags, and internal arith-
metic and logic units as an 80x86, it must also imitate
those elements, either in its own registers or in memory.
And it must accurately reproduce the results of each in-
struction, which requires 680x0 routines specifically writ-
ten to make sure that the emulated registers and flags will
be exactly the same as they would be on a real 80x86 after
executing each instruction.

For the CPU, it’s not hard work, just exacting and very
tedious—the sort of job at which computers excel. But
it’s also very slow work, because the microcode inside a

JANUARY 1994 BYTE 165

STEVE LYONS © 1994

Personalities

real 80x86 runs at a much faster clip than
the external 680x0 instructions that must
emulate it. In the time it takes the 680x0
to perform one 80x86 instruction, a real
80x86 CPU might be able to execute doz-
ens of instructions. The result: A DOS pro-
gram running under pure emulation on a
Mac is certain to be incredibly slow com-
pared to one running on a PC.

The problem isn’t the Mac, though—
Macintosh software being emulated in-

SPECIALDRMN--CGLRZ-%s0etcTe !

1856

Operating

Systems

struction-by-instruction on a Unix work-
station runs like molasses, too. The emu-
lation equation is easy to understand: The
processor's ordinary performance, minus
all the overhead of emulation, will equal
how much work it can do. Thus, unless
the processor performing the emulation is
spectacularly faster to compensate for the
emulation overhead, the software running
under emulation will simply be very, very
slow.

REPORT

A Dime a Dozen
What makes the new personalities better
than emulation in the past? Faster proces-
sors help, of course. But the big difference
is that many of today’s applications run
under GUIs like Windows, the Mac, or
Unix’s Motif. That means the new per-
sonalities can “cheat” on the emulation
process.

An application running under a GUI
spends much of its running time doing

SunSelect’s Wabi vs. Insignia Solutions’ SoftWindows

SUnSelect's Wabi (Windows Ap-
plication Binary Interface), which

will be bundled with many Unix work-
stations, uses the workstation’s normal X
Window System display protocols for
creating the images called for by a Win-
dows application and Unix’s
usual facilities for handling
files, memory, and other re-
sources.

Wabi is based on technol-
ogy acquired by SunSelect
from Praxsys Technologies,

Windows applications running under
Wabi have the look of an X-based Unix
GUI such as Motif or OpenLook, rather
than that of Microsoft Windows. And
instead of running the entire Windows

but it functions much like
other personality transia-
tors. While working its way {8
through the code in a Win-
dows application, Wabi de-
codes and mimics individual
80x86 instructions until it en-
counters a call to a DOS or
Windows function. Then the
emulator switches to native
mode, performing the DOS or Windows
function by making the appropriate calls
to X, Unix, or other facilities. The tech-
nical challenge comes in translating the
parameters of each Windows call to the
appropriate format for Unix and then
translating the results from the function
call into the appropriate information to
be returned in the appropriate Windows
data structures,

The first release of Wabi claims to
support the Windows 3.1 API, with DDE
and OLE supported only as external
DLLs that must be interpreted by Wabi’s
80x86 emulator. Networking is limited to
access to remote file systems and print-
ers. SunSelect says improved network
support and native versions of DDE and
OLE will come in a future release of
Wabi.

BYTE JANUARY 1994

Wabi running Windows applications on the Solaris desktop.

as Insignia Solutions’ SoftPC and Soft-
Windows currently do, Wabi opens a
new window on the Unix desktop for
each Windows-based application. Us-
ing a standard X display means both text
and graphics can be cut and pasted be-
tween Windows and Unix applications
(although most Unix applications can’t
automatically convert to and from the
Windows bit-map format).

However, SunSelect isn’t religious
about its X implementation of Windows.
To make sure TrueType fonts are prop-
erly handled for the Windows applica-
tions, the company has licensed font-
handling technology from Bitstream. As
a result, when a Windows application
issues a call to display text in a particu-
lar TrueType face, Wabi converts the
request to X calls but also provides the

appropriate fonts for the display.

Wabi can’t currently handle plenty of
Windows-related features, including
multimedia extensions, ODBC (Open
Database Connectivity), MAPI (Mes-
saging' API), and networking beyond
access to remote file systems and print-
ers. Are those limitations Wabi-killers?
SunSelect doesn’t think so, arguing that
Wabi’s purpose is to run the popular
Windows applications Sun’s customers
have asked for, not to convert Unix into
a close copy of Windows. The current
list of “Wabi-certified” applications is
short. Only 13 packages from Lotus,
WordPerfect, Microsoft, Borland, and
other major Windows software vendors
are guaranteed to run under Wabi.

According to SunSelect’s director of
research and development, Andy Hal-
ford, another 50 packages seem to work
fine, but they haven’t been run through
the Wabi testing and certification pro-
gram. Software that uses APIs Wabi
doesn’t support may fail to install or exit
gracefully with an option to close files—
or even cause Wabi to abort.

But a Microsoft-backed competitor
thinks Wabi’s approach is far too limited.
The day before SunSelect unveiled Wabi,
Microsoft launched a preemptive strike
by announcing it would license Windows
source code to Insignia Solutions. The
product that Insignia produced from that
agreement, SoftWindows, runs Windows
applications on Unix workstations, but
there the similarity to Wabi ends.

SoftWindows is actually Windows
3.1 and MS-DOS, recompiled for Unix.
Initially, SoftWindows fully supports
OLE, DDE, and DLLs; Insignia says it is
now working on multimedia and other
extensions. The image that appears in a

SPECIAL PP GRAEI TS M R EPORT

some very predictable things. It repeated-
ly makes calls to the GUI’s libraries to
manipulate windows and perform other
GUI-related functions. And that’s where a
personality can make up for some of the
time lost doing instruction-by-instruction
emulation. A carefully crafted personality
can come complete with libraries that mim-
ic the GUI's own internal libraries but that
are written in native code. Some vendors
call this approach rranslation, to distin-

SoftWindows window is that of a com-
plete Windows desktop, and because the
source code is the same as the original
80x86 version, every nuance of Win-
dows is preserved. When SoftWindows’
80x86 emulator reaches a Windows func-
tion call, it doesn’t simply mimic the
function. It actually performs it, at full
processor speed, with appropriate calls
made to Unix instead of DOS.

Because it uses authentic Windows
source code, SoftWindows is able to run
a far wider range of Windows applica-
tions than Wabi. By comparison, says
Insignia, Wabi offers very little.

But according to SunSelect, Wabi does
claim one major advantage over Soft-
Windows: blinding speed. Ex- §
ecuting every line of authentic
Windows code for each function
creates an awful lot of overhead, |
particularly because Windows was
designed as a 16-bit application
running on top of MS-DOS and
was built to perform its own mem-
ory management and other ad-
vanced functions. By contrast,
Unix is a 32-bit operating system |
that has finely tuned memory man-
agement and other facilities. 4

SunSelect argues that by using #&&
Unix to mimic Windows rather
than slavishly performing every |
line of the authentic code, Wabi
can outperform genuine 80x86-
based Windows. A demonstration per-
formed at SunSelect’s original Wabi
announcement appears to bear out the
claim. Running the Wintach benchmark,
a PC running the Intel version of Solaris
with Wabi performed 50 percent faster
than an identical PC running Microsoft
Windows, according to SunSelect.

Operating

Systems

guish it from the slower process of emu-
lating code one instruction at a time.

For example, on a Mac executing a Mi-
crosoft Windows program, performance
might be very slow when it’s interpreting
80x86 instructions. But when a call is made
to open a window, the personality module
could switch to a precompiled 680x0 win-
dow-opening routine. Because the GUT li-
braries don’t have to decode and imitate
each 80x86 instruction, performance can

In response, Insignia points out that
Wintach is just one benchmark, and it’s
strongly geared to graphical functions—
the kind of functions where Wabi would
be expected to do well. Insignia claims
it uses a battery of benchmarks to make
sure its RISC Unix versions of SoftWin-
dows will perform at least as well as a
25-MHz 486-based PC in every area. The
company says it has not yet benchmarked
SoftWindows against Wabi but that the
two initially look “competitive.”

Ironically, SunSelect is an Insignia
customer. The company sells an en-
hanced version of Insignia’s SoftPC as
SunPC, and SunSelect acknowledges that
for SPARC customers who need more

3

SoftWindows running Windows applications.

complete PC emulation, that’s the way to
go. But for those who need to run only
the top Windows applications, says Sun-
Select, Wabi is a better solution.

The choice between SoftWindows and
Wabi comes down to whether a customer
wants to run full-scale Windows or full-
speed Windows applications.

Tl
Personalities

speed up dramatically in sections of the
code that call the GUI's ABI (Application
Binary Interface). The result is that in those
sections of the code, the application can
approach (or possibly exceed) its perfor-
mance on its native processor.

And there’s a lot of code that calls the
GUI ABI in typical applications today.
Apple claims that a Mac application spends
up to 90 percent of its processing time per-
forming Mac toolbox routines, rather than
executing code that’s unique to the appli-
cation. SunSelect says that Windows ap-
plications spend 60 percent to 80 percent of
their time in the Windows kernel. As a re-
sult, there can be a much smaller perfor-
mance penalty for emulation of GUI-based
applications. In fact, SunSelect claims that
its new Windows personality, Wabi (Win-
dows Application Binary Interface), can
outperform real Microsoft Windows on
the same hardware when running some
benchmarks, thanks to highly optimized
libraries.

The rise of GUIs has also resulted in
another change in the way most desktop
applications software is written today. Un-
til the advent of the Mac, most desktop
software treated operating-system calls
with a sort of “do-it-yourself” philosophy.
If the programmer didn’t think the operat-
ing system would perform the routine fast
enough, he or she would often dispense
with the available operating-system calls
and write an equivalent routine that
directly manipulated hardware or
software. This approach was com-
| monly used for time-critical func-
tions like display scrolling and get-
ting data from a serial port.

*“Programming on the metal” for
| performance was a nightmare for
emulator writers, because they had
to mimic software that was going
directly to hardware that usually
didn’t exist on the computer doing
the emulation. It was also a major
problem for computer makers such
4| as IBM and Apple, because it
i locked them into using exactly the

same hardware architecture in gen-
eration after generation of the IBM PC and
the Apple II. Changing many hardware
details was out of the question, even if the
changes would mean dramatic improve-
ments, because changes would also break
lots of software,

Lessons Learned
Apple learned its lesson from the Apple
I experience. With the Mac, Apple

JANUARY 1994 BYTE 187

SPECIAL RP-CiRF:5S=ce 8 R EPORT

worked hard to discourage programmers
from *“going to the metal” or otherwise de-
parting from a strict set of programming
guidelines. (Apple’s programmers weren't
immune to the temptation to program on
the metal, though. Some Apple telecom-
munications software for early, relatively
slow Macs programmed the hardware di-
rectly.) The result of that discouragement
was that Mac applications software was
much less likely to break the rules than
PC software. With fewer hardware de-
pendencies, Apple has been able to evolve
the architecture of the Mac over time.

The biggest reason programmers used
the Mac’s “toolbox™ of GUI library rou-
tines was not a stick, but a carrot. The tool-
box routines were so complex and power-
ful that using them was significantly easier
than writing your own version of the code.
Microsoft Windows also included a pow-
erful GUI ABI, as did Microsoft and
IBM’s OS/2 Presentation Manager and
Unix GUIs based on the X Window Sys-
tem. When Windows rocketed to popu-
larity in 1990, the tide turned for emula-
tion. Finally, a large body of applications
software that spent a large part of its time
in a GUI ABI could be mimicked.

With the technical barriers down, there
are pressing business reasons why ven-
dors believe multiple personalities are a
crucial part of any successful new operat-
ing system. DOS, Windows, and Mac pro-
grams pack the shelves in software stores;
obtaining shelf space for a new incompat-
ible type of software is practically impos-
sible. More important, users have plenty of
Windows and Mac software, and they’re
not about to give up the software they
know well, no matter how impressive a
new operating system promises to be. In
fact, for an increasing number of business
customers, the ability to run particular PC
applications (e.g., Lotus 1-2-3 and Word-
Perfect) is becoming a standard require-
ment for desktop computer purchases, even
if the purchase also requires technical ap-
plications available only under Unix.

Luckily, the modularity of the new gen-
eration of operating systems makes it far
easier to support multiple personalities.
Unlike older operating systems, which of-
ten consist for all practical purposes of a
single large block of code divided into ar-
bitrary parts, newer systems are modular,
with clearly defined interfaces between
the parts. That makes it much easier to de-
sign additional modules that bundle to-
gether processor emulation and GUI li-
brary translation.

O peratinng
Systems

So the pieces have all come together,
both technological (software style, proces-
sor speed, and modular operating systems)
and business (popular “must-run” software
packages). Multiple personalities are the
wave of the future for operating systems.

Who's Got What?
Among the advanced operating systems
that will specifically incorporate multiple

Personalities

personalities are IBM’s OS/2 2.x and
Workplace OS; Microsoft Windows NT;
the PowerOpen Association’s PowerOpen;
and versions of Unix from Sun Microsys-
tems, IBM, and Hewlett-Packard. In ad-
dition, some companies are repackaging
their user interfaces as personality mod-
ules, and still other vendors offer emulation
and personality-translation products that

can run as applications. continued

E!

usecable.

sessions.

TCP/IP or LAT network. W

NEW FACE ON YOUR HOST DATA...

VT EMULATION GIVES YOUR
A A FACELIFT—THE WINDOWS

Before FEAterm, host deta was dull,
colorless, and limited by aging host
applications. KEAterm tramsforms your host
data—meaking it better looking, cmd more

Apply the power and ease of Windows
tools, like Excel, 1-2-3, WordPerfect, Visual
Basic. .. to your host data using KEAterm's
DDE, het links, file transfer, and user-defined
menus and dicdog boxes. And you'll get
more done faster with multiple KEAterm

Advanced features include a powerful
macro langucage cnd definable on-screen
button pads, to make your work even
easier. KEAterm speeds your work with high
throughput over your serial port or installed

KEAterm 420—a powerful link o
yow VAX and UNIX text
applicctions,

KEAterm 340—lor applications
recuinng ReGIS, Tektronix, of sixel
graphics.

KEAterm—ior Windows NT
available soon!

Empower your daskiop nowl

Call 1-800-663-8702

KEA Systems Lid.

3738 North Fraser Way, Unit 101
Bumnaby. B.C. Canada V&) 5G1
Phone: (604) 4310727

Fax: (604) 431-0818

KEAK), KEdrs, ISTEM, PoserSisicn, KEA aref o especioe bes i

T v

Circle 256 on Inquiry Card.

JANUARY 1994 BYTE 189

SPECIALBNMCCGARAZEIITIIE M R EPORT
(Dpreealings
: . SysLeams
Personalities Sl
EXISTING AND FORTHCOMING OPERATING SYSTEMS OFFERING MULTIPLE PERSONALITIES
08/2 2.x Workplace 082 Windows NT? PowerOpen* Unix (with Wabi)s
Vendor: IBM IBM Microsoft PowerOpen SunSoft (Solaris), IBM
Association (AlX), Hewlett-Packard
(HP-UX), USL (SVR4.2)
Availability: Now Future (this year) Now Future Now (Solaris)
Personalities DOS, Windows 3.1 DOS, Windows, 0S/2, DOS, Windows 3.1, Macintosh, AlX (Unix) Windows 3.1
available: AlX (Unix), others Win32, 0S/2 1.x, Posix
Look and feel: ~ OS/2 or complete 08S/2 Workplace Windows Motif; Mac desktopina Motif or
Windows environment Shell or Unix CDE self-contained window OpenWindows
within a window
Applications Windows 3.1 Unknown DOS and Windows appli- RS/6000 AlX, System7 13 Windows applications
supported: applications and (prerelease) catlons that do not require from major vendors
device drivers access to hardware; character- “certified”; others

3 Posix support requires recompilation of source code.
4 Mac support via Macintosh Application Services.

of Solaris for intel.

based 16-bit OS/2 applications

108/2 2.x is based on code licensed from Microsoft, 0S/2 for Windows incorporates no Microsoft code.
2 Additional proposed personalities include Mac and BSD Unix. Currently a product in development.

5 Wabi Windows persanality was reverse-engineerad from Windows AP). Wabi has been licensed to IBM, Novall, end HP and will be availabta with evary Sun workstation and copy

may run

THIRD-PARTY PERSONALITY SOFTWARE

1 “Statement of direction” from Apple.

4 Emulates BOx86 and PC hardware environment.
5 Based on Windows source code licensed from Microsoft.
6 Microsolt Windows can be run over Merge.

Macintosh
Application Services! Liken? Equal Application Adapter? SoftPC* SoftWindows$ Merget
Vendor: Apple Andataco Quorum Software Insignia Insignia Locus
Systems] Solutions _ Soluticns Computing
Availability: Future (this year) Now Now Now Now Now
Operating Unix (PowerOpen, Unix (Solarig, Unix (Solaris, Mac and Unix Unix (Solaris and HP- Unix (80x86
systems others) HP-UX) Silicon Graphics) (many varieties) UX now; AlX, Silicon versions)
supponted: Graphics, and DEC
QSF/1 in March) _
Personalities Mac Mac Mac System 7 DOS, Windows 3.1 Windows 3.1 DOS
_availabl_e: el
Look and Mac using X Complete Mac ~ Motif or Windows, character- Complete Windows Character-
feel: Window System desktopin a OpenWindows mode DOSina environment in a mode DOS
- widgets window window window
Applications Unknown Monochrome Microsoft Word and Excel ~ Most DOS and Most existing Windows Most DOS
supported: System 6-based “certified”; others run but Windows applications applications and applications that
applications are not guaranteed and that do not require device drivers that do do not require
may end Equal session direct hardware not require direct direct hardware
unexpectedly access hardware access access

2 Requires a copy of System 6.0.7. Emulates 680x0 CPUJ and Mac hardware environment.
3 Reverse-sngineerad from System 7 specifications. Runs Mac applications but does not mimic entire Mac environment.

Perhaps the most familiar multiple-
personality operating system is also the
one that opened the floodgates by showing
that the ability to run other systems’ soft-
ware can be a big plus. OS/2 2.0 ran DOS
and Windows 3.0 applications, and ver-
sion 2.1 improved on this, upgrading to
Windows 3.1 software and making the
Windows windows a regular part of the
desktop.

At first glance, IBM developers would
seem to have had a comparatively easy

180 BYTE JANUARY 1994

task in adding the Windows personality
to OS/2. After all, like Windows, OS/2
runs on 80x86 CPUs, 50 no processor em-
ulation was required. In addition, IBM had
access to actual Microsoft Windows source
code and the right to use it, for a licensing
fee, in O8/2. So IBM's work largely con-
sisted of integrating the Windows code
into OS/2.

But it still wasn’t easy. The require-
ments of the two environments created dif-
ficult problems, some of which IBM has

never satisfactorily resolved. For exam-
ple, Windows incorporates its own mem-
ory manager. So does OS/2. Unable to
modify the Windows code to use OS/2’s
memory management services directly,
the O8/2 developers settled on using the
Windows memory manager within the
0S/2 memory manager. Windows’ ma-
nipulations of memory can spill over into
the OS/2 swap file. Similarly, OS8/2’s
“seamless Windows” mode required major
work on the display drivers to enable the

Personalities

two window systems to share screen real
estate.

Windows NT offers five operating-
system personalities: DOS, Windows, an
advanced 32-bit version of Windows, OS/2
1.x, and a Unix-like personality that meets
the IEEE’s Posix.1 specification. NT runs
on several different CPUs, including the
Mips R4000/R4400 and DEC’s Alpha, as
well as the 80x86. To run DOS and Win-
dows applications on non-80x86 platforms,
NT incorporates emulation technology li-
censed from Insignia Solutions, which also
makes the DOS emulator SoftPC for the
Mac and Unix workstations. (NT's OS/2
personality is not supported on non-80x86
processors.)

Naturally enough, to provide the ability
to run Windows applications, Microsoft
used its own Windows source code, mod-
ified and recompiled for each CPU that
NT runs on. The 16-bit Windows and DOS
personalities run on top of the 32-bit Win-
dows (Win32) NT subsystem. On 80x86
machines, where the CPU is not emula-
ted, DOS and 16-bit Windows applica-
tions run in V86 mode, and 16-bit calls

S PECIAL Adlvivmna-a~«l

CPpgra-n-zalanngy

Syslamnes

are “thunked” (converted to 32-bit ver-
sions) and serviced by Win32.

NT’s major trade-off in DOS and Win-
dows support is that, in keeping with NT's
security and reliability goals, device drivers
and other DOS and Windows programs
are not allowed access to the hardware.
As a result, some DOS and Windows pro-
grams simply won’t run under NT. (In
contrast, 0S/2’s DOS and Windows sup-
port allows more complete DOS and Win-
dows support, but for that capability trades
away robustness.)

NT’s OS/2 support has special limita-
tions compared to the DOS and Windows
personalities, but it is still a thoroughly us-
able version. It is available only on 80x86
NT, does not support the PM GUI, and is
designed to handle only software written
for OS/2 1.2 and earlier versions, which
limits applications to 16-bit versions. In
practice, though, NT's OS/2 personality
can run current versions of many OS/2
packages—particularly server applications,
which don’t require PM.

In contrast to the OS/2 personality, NT’s
Posix personality isn’t actually mimick-

There are two ways
to quiet a noisy computer.

The irritating whine of a noisy power supply can really rattle your nerves! You
could seek relief with heavy-duty ear muffs, but the rea/ solution is a Silencer®
power supply. Appreciated by users since1986, its custom, high-efficiency fan
& low-turbulence circuitry reduce noise by up to 84% (8 db).
You'll have clean, reliable ultra-quiet power!

MOIBE LEVELS (db)

&
£

$119

Silencer 205 (for slims)
Silencer 220 (for desktops)

$129

Silencer 270 (for towers)

R
vy d

$179

“Power supplies you can barely hear” PC World, July 1993
“If you value quiet, get the Silencer” Business Week, Sept. 18, 1989

], CAS

182 BYTE JANUARY 1994

PC POWER & CODLING, INC.

ORTINARY SRENCER
POWER SUPPLY POWER SUPPLY

57 931-6988

Circle 260 on Inguiry Card (RESELLERS: 261).

REPORT

ing an existing operating system at all. Al-
though there are versions of Unix (on
which Posix is modeled) for each CPU
that NT runs on, NT's Posix can’t run
shrink-wrapped Unix software; it requires
programs to be recompiled before run-
ning.

The Unix Strategies

While Windows NT can’t run Unix bina-
ries, some Unix vendors are convinced
they need the ability to run Windows soft-
ware. That ability has been available for
several years through third-party software
like SoftPC (now available with Win-
dows), which runs on Macs and Sun, HP,
IBM, Next, and Silicon Graphics Unix
workstations. On 80x86-based computers,
Locus Computing’s Merge also enables
DOS applications to run under Unix.
Merge runs a standard copy of Windows
on top of the DOS environment.

In addition, Insignia’s new SoftWin-
dows was scheduled to begin shipping in
December. SoftWindows uses a recom-
piled version of the Windows source code
to speed up Windows applications run-
ning on Sun, HP, IBM, DEC, Next, and
Silicon Graphics Unix workstations. If that
approach sounds familiar, it should: It’s
almost exactly the same approach used for
non-80x86 versions of Windows NT. But
while SoftWindows and NT are concep-
tually close cousins, NT can also run 32-bit
Windows code, while SoftWindows is lim-
ited to running16-bit Windows applica-
tions.

However, the most aggressive approach
to bringing Windows and Unix together
comes from Sun Microsystems’ SunSe-
lect division, which has developed Wabi.
While SoftWindows uses recompiled Win-
dows source code from Microsoft, Wabi is
an attempt to reverse-engineer Windows
based on its functional specifications, with
all operating-system-related functions
(e.g., display, memory management, and
interprocess communication) handled by
Unix. Instead of the Windows desktop,
each Windows application running under
Wabi appears in its own screen window
and uses the Motif or OpenLook screen
appearance rather than that of Microsoft
Windows.

The result is a mixed success. SunSe-
lect initially guarantees that Wabi can run
only the most popular Windows software,
including Lotus 1-2-3 and Ami Pro; Word-
Perfect; Microsoft Word, Excel, Power-
Point, and Project; Borland Paradox and
Quattro Pro; Aldus PageMaker; Harvard

Prsonallties

Graphics; CorelDraw; and Procomm Plus.
The company says that the list of “certi-
fied” applications will grow. In the mean-
time, while some noncertified applications
will run, others may not install, or may
fail while the application is running due
to use of unsupported API calls.
SunSelect says its focus is on running
popular applications rather than mimicking

Moot Word 51 ks outstanding word processing capab lides

SPECIAL B VCERAF:SsTerals |

Operating

Systemns

Not to be outdone, Apple is working on
its own Mac personality translator to run
on Unix systems. The first version, Mac-
intosh Application Services, will run on
PowerPC-based workstations running the
PowerOpen version of Unix. MAS will let
PowerOpen workstations run both Unix
applications and shrink-wrapped software
intended for 680x0-based Macs. (MAS
should not be confused
with the new PowerPC-
based Macs, which also
use processor emulation
and GUI translation to
run 680x0 Mac soft-
§ ware.)

MAS will appearas a
*Macintosh window” on
PowerOpen-based work-
stations. Although Ap-
ple says that MAS will
be compatible with X,

Mac applications run-
ning under MAS will
still have the distinctive
Mac look and feel.

In addition, Apple has
announced that it will
eventually support other
Unix workstations. Ap-

Quorum Software Systems’ Equal running the Macintosh version of
Microsoft Word on a Silicon Graphics workstation.

Windows in its entirety. But all Windows
applications function in a complex envi-
ronment, with subtleties that may show up
only when Wabi’s developers tackle sup-
port for applications outside the most-
wanted list. In addition, Windows will con-
tinue to be a moving target; SunSelect may
be hard-pressed to keep up with future
changes required by new versions of Win-
dows software.

However, Wabi has one huge advan-
tage in any popularity contest for Win-
dows-on-Unix software: SunSoft is mak-
ing Wabi available with every copy of its
Solaris version of Unix, and SunSelect has
licensed the product to IBM, HP, and No-
vell to include in their versions of Unix. If
all these vendors include Wabi in their
systems as Sun does, Wabi will be shipped
with more than 70 percent of all Unix
workstations.

164 BYTE JANUARY 1994

ple hasn’t released de-
tails of its plans, and
they clearly fall under
the category of future
product development.
However, Sun, HP, and
IBM have already said
they hope to use the
forthcoming Apple tech-
nology to let their Unix
workstations run unmodified shrink-
wrapped Mac software.

In the meantime, two ISVs (indepen-
dent software vendors) are already emu-
lating the Mac on Unix systems—although
with limits. Andataco’s Liken is a pure
processor emulator; it runs on Sun and HP
workstations and mimics the Mac’s 680x0
CPU, as well as the Mac hardware envi-
ronment. However, Liken doesn’t try to
copy the Mac’s toolbox GUI libraries; for
that, you need a copy of System 6.0.7.

In contrast to Liken, Quorum Software
Systems’ Equal is designed to mimic both
the 680x0 processor and all Mac system
calls, so that Mac applications can run on
Sun and Silicon Graphics Unix worksta-
tions. Like Wabi, Equal puts each Mac ap-
plication in its own window, using X to
display Motif- or OpenLook-style window
decorations. Also like Wabi, Equal cur-

REPORT

rently has a limited set of “certified” ap-
plications. Initially, it includes only the
Mac versions of Microsoft Word and Ex-
cel, although Quorum plans to expand the
list of certified software early this year to
include Microsoft PowerPoint, QuarkX-
Press, and other popular Mac software.
(According to Quorum, many “uncerti-
fied” Mac applications run with no prob-
lems.)

Closing the circle is IBM’s Workplace
08, the 0S/2 successor based on the Mach
3.0 microkernel. Standard Workplace OS
personalities will include Unix and OS/2
(along with its DOS and Windows per-
sonalities). But IBM hints that other per-
sonalities may also be available for the
system. Because the Workplace OS inter-
faces are being developed in close com-
munication with Taligent, the IBM/Apple
joint venture to develop an object-oriented
operating environment, both Taligent and
the Mac GUI are likely candidates as
Workplace OS personalities.

Who Wins, Who Loses

The ability to run Windows and Mac soft-
ware is no longer a minor consideration
when it comes to advanced operating sys-
tems. But beyond that simple point of
agreement lie a welter of strategies for
putting the multiple-personalities idea to
work—and some of those strategies are
diametrically opposed to others. A care-
ful examination of the strategies operat-
ing-system vendors are using makes it ap-
parent that there’s no single correct way to
implement multiple personalities.

In the case of Unix, the personality
translator is typically designed to float
along the surface of the operating system,
like any other application. For more re-
cent operating systems like Windows NT
and Workplace OS, the personality module
is much more closely linked to the oper-
ating system, although it is still highly
modular. And for 0S/2, with its simpler,
less modular structure, the personality ca-
pability appears to be deeply embedded
in the operating system.

But while operating-system vendors are
juggling their approaches to run the largest
number of popular applications most ef-
fectively, the biggest impact of the trend
toward multiple personalities may be on
applications software developers. Win-
dows and Mac applications are likely to
sell slightly better than before. The big
winners will be those Windows applica-
tions that are already the most popular,
because the ability to run them will be

e

Personlties

SPECIALRN-:- G RS erats !

Operating

Systems

REPORT

Windows NT and Workplace OS: Plug It In

While Unix personality modules
are designed to function as if
they were applications, both Microsoft’s
and IBM'’s entries in the portable 32-bit
operating-system sweepstakes take a
more integrated approach. Microsoft
Windows NT and IBM’s forthcoming
Workplace OS have been specifically
designed to support emulation of mul-
tiple operating-system personalities, al-
though the difference between the two
systems’ approaches is striking.

Windows NT supports five operat-
ing-system personalities: MS-DOS, 16-
bit Windows, OS/2 1.x, Posix, and 32-bit
Windows. All five personalities are im-
plemented as NT “environment subsys-
tems”; each runs in its own protected
user space. The Win32 subsystem han-
dles display, keyboard, and mouse sup-
port for the other four personalities.

DOS and 16-bit Windows applica-
tions run via VDMs (virtual DOS ma-
chines), each of which emulates a com-
plete 80x86 computer running MS-DOS.
In NT, a VDM is a Win32 application;
thus, like a typical Unix personality mod-
ule, NT DOS and 16-bit Windows ap-
plications effectively float in a layer di-
rectly above the Win32 subsystem.

The OS/2 and Posix subsystems are
a different matter. As full-scale NT sub-
systems themselves, they communicate
with the Win32 subsystem for user input
and output, but they also communicate
directly with the NT Executive for other
operating-system services. The OS/2
subsystem can run many current char-
acter-mode OS/2 applications, includ-
ing OS/2 SQL Server, and it supports
named pipes and NetBIOS.

But the Posix subsystem is remark-
ably limited, despite direct access to ker-
nel services. Posix applications must be
compiled specifically for Windows NT;
NT does not support binary code in-
tended for any other Posix-compliant
operating systems, such as Unix. In ad-
dition, NT’s Posix subsystem does not
directly support printing, does not sup-
port network access except for remote
file systems, and does not support any fa-
cilities of the Win32 subsystem such as
memory-mapped files or graphics.

1686 BYTE JANUARY 1994

Compared to NT, IBM’s forthcom-
ing Workplace OS uses a more straight-
forward organization. While some NT
personalities go through the Win32 sub-
system and others deal directly with the
NT kernel, all Workplace OS personal-
ities have direct access to kernel ser-
vices. Workplace OS currently supports
three personality servers: an OS/2 server
for OS/2 applications, an AIX server
that mimics IBM’s version of Unix, and
an MVM (multiple virtual machines)
server for DOS and 16-bit Windows ap-
plications.

Workplace OS is built on a version
of Mach 3.0. The IBM microkernel sup-
plies only a very limited set of services;
it is essentially a software backplane into
which other modules, called servers,
connect. The personality servers func-
tion exactly like any other Workplace
OS servers. Each runs in its own pro-
tected memory spacc and communicates
directly with the microkernel and,
through it, other servers.

However, all personality servers are -

not created equal. IBM initially plans
two versions of Workplace OS, one the
08S/2 Workplace Shell, the other, Unix
CDE (common desktop environment).
In each case, the dominant personality
will do double duty, providing both the
capabilities required for its own appli-
cations and the desktop GUI and default
execution semantics for the other per-
sonalities. On a standard Workplace OS
system, the OS/2 (or Unix) personality is
dominant. The other personality servers,
known as alternative personalities, don’t
contain code to provide these services.

However, dominance is entirely arbi-
trary in Workplace OS. The Workplace
OS could be given a Windows look and
feel, although IBM has no plans to do
so. IBM says the server interfaces for
Workplace OS will be published, so con-
structing dominant and alternative per-
sonalities will be practical for ISVs (in-
dependent software vendors). Additional
personalities can also be added by IBM
or other vendors; although none have
been announced, a Mac personality is
rumored as a future addition.

In practice, announcements and dem-

onstrations are currently the limit of
Workplace OS's functionality, because
it is a product in development rather than
a shipping package like NT. In recent
demonstrations, for example, Workplace
0S’s Unix and DOS personalities were
both character-based, and users could
only hot-key between them and the OS/2
GUL

Technically, both Windows NT and
Workplace OS use modular subsystems
to support multiple operating-system
personalities. Paul Giangarra, lead ar-
chitect for Workplace OS, is enthusias-
tic about the idea of other software ven-
dors developing additional personalities
(or, alternatively, personality-neutral ser-
vices). Microsoft’s director of business
development, Bob Kruger, says the
whole reason NT includes Posix sup-
port is to demonstrate that subsystems
can be added, either by Microsoft or oth-
er vendors, that connect directly to the
NT Executive without running as Win32
applications.

In fact, the two approaches seem very
comparable at a technical level. Then
why does Workplace OS’s approach to
multiple personalities seem so robust,
promising the potential ability to run
every significant desktop operating sys-
tem, while NT's non-Windows person-
alities seem thoroughly undeveloped?
One reason may be that it’s easier to cre-
ate a robust plan than a working operat-
ing system with robust implementations
of multiple personalities.

But there’s also clearly a difference
in business philosophy. IBM is pursu-
ing multiple personalities, while Micro-
soft appears to be discarding them. “How
many people are actually going to write
a Posix application?” asks Kruger. And
he downplays NT’s ability to run OS/2
applications: “‘At the end of the day, peo-
ple will buy Windows NT because it
runs Windows,” Kruger insists. It’s true
that with good support for Windows ap-
plications, NT already has many of the
benefits that multiple personalities prom-
ise. But only time will tell if a Windows-
only philosophy will help or hurt NT in
its competition with other advanced op-
erating systems.

Operating

Systems

A Better OS/2 Than OS/2?

Ironically, the first major operating
system to demonstrate the commer-
cial value of supporting multiple per-
sonalities is now demonstrating a new
way to support them. OS/2 was a serious
disappointment to development partners
Microsoft and IBM when it was first re-
leased. When it was first introduced, an-
alysts predicted that within five years,
0S/2 would account for more than half
the sales of business PCs, displacing
MS-DOS as king of the desktop. Instead,
early versions of OS/2 sold fewer than a
half-million copies per year—a tiny frac-
tion of expectations. And with OS/2’s
downfall came the collapse of the close
relationship between IBM and Micro-
soft.

So when IBM relaunched OS/2 in
1992, Big Blue needed an edge. It found
that edge by beefing up OS/2’s ability
to run DOS-based applications software
and adding support for Windows appli-
cations. While OS/2 1.x offered only a
single window for running DOS soft-
ware, version 2.0 let users run several
DOS sessions at once. Windows sup-
port in version 2.0 was initially limited to
running Windows 3.0 on a full screen,
but OS/2 eventually supported both
“seamless” Windows applications (each
appearing in its own desktop window)
and, in version 2.1, support for Windows
3.1 applications.

05/2’s DOS and Windows support
came through MVM (multiple virtual
machines), an OS/2 subsystemn that could
imitate a series of DOS PCs. In contrast
to the modular approach to multiple per-
sonalities used by Unix, Windows NT,

and Workplace OS, 0S/2’s DOS and
Windows support was firmly embedded
in the operating system’s code, which
seriously limited its flexibility in adding
new operating-system personalities.

What proved to be most important,
though, was simply that DOS and Win-
dows support was there. Despite a dearth
of OS/2-specific software, OS/2 sold
some 2.5 million copies since OS/2 2.0
appeared—far more than in its previous
history. While that was less than one-
quarter of Microsoft’s annual sales of
Windows, it represented an astonishing
comeback for OS/2 and provided con-
vincing proof that the ability to run pop-
ular software could prove to be the dif-
ference between success and failure for a
new operating system.

The comeback came at a high price.
0S/2’s Windows support used source
code that was provided to IBM by Mi-
crosoft as part of the companies’ tech-
nology-sharing agreement. To use the
Windows code, however, IBM was re-
quired to pay a royalty to Microsoft for
every copy of OS/2 that the company
shipped. Although IBM never made pub-
lic the details of the license, the compa-
ny has reportedly paid Microsoft $20
per OS/2 copy, or more than $50 mil-
lion since launching OS/2 2.0. Also, that
royalty fee pushed OS/2’s list price to
more than $200.

But a new version of OS/2 changes
both the economics and the technology
of its Windows support. Code-named
Ferengi when it was under development
at IBM’s Personal Software Products
Division in Boca Raton, Florida, the new

SPECIALRN-GRZE-1:CIt M R EPORT

version is officially named OS/2 Spe-
cial Edition for Windows, or OS/2 for
Windows for short. As its name sug-
gests, it functions as an upgrade to OS/2
for users who own Microsoft Windows.
To install, it requires a system with DOS
5.x or higher and Windows 3.1. Once
in place, OS/2 for Windows loads the
actual Windows environment, modifying
it on the fly, so that Windows support
is virtually identical to that under pre-
vious versions of OS/2.

The business impact of OS/2 for Win-
dows is clear: Because it incorporates
no Microsoft Windows code, IBM pays
no royalty to Microsoft. As a result, the
list price of the package is less than half
that of conventional OS/2.

The technical impact may be just as
dramatic, at least for IBM’s develop-
ment team. In effect, OS/2 for Windows
lifts up Windows and slips an OS/2 jack-
et around it. That approach will pose a
major challenge for IBM developers
with each new release of Windows; de-
velopers will have to work feverishly to
upgrade OS/2 for Windows to tweak the
new Windows binaries correctly. Still,
their efforts may be no greater than the
work required to integrate a new ver-
sion of the Windows source code would
have been.

Whether IBM’s new OS/2-jacket ap-
proach to Windows support will have
as great an impact on OS/2 sales as the
improved DOS and Windows support
of OS/2 2.0 remains to be seen. What is
clear is that OS/2 for Windows effec-
tively turns OS/2°s DOS and Windows
inside out.

bundled with a large percentage of Unix
workstations in the form of Wabi. Ironi-
cally, because they are so popular, the ad-
ditional software sales may not make a big
impact on them.

And the big losers? They’re likely to
be single-user productivity applications
written specifically for Unix. Unix soft-
ware developers already face major prob-
lems. Popular Unix workstations sell in
the hundreds of thousands, not millions
(like the Mac) or tens of millions (like the

168 DBYTE JANUARY 1994

PC). Few software retailers carry any Unix
applications at all. The combination of
low volume and limited distribution means
that Unix software vendors will be hard-
pressed to compete against similar Win-
dows or Mac programs. That could spell
the end of the line for applications that
don’t take advantage of the special fea-
tures of Unix—or any other advanced op-
erating system.

In the end, the real impact of multi-
ple personalities will be on users, in the

form of easier access to better software
and more freedom of choice in operating
systems. That may not be great news for
all operating-system or applications ven-
dors. But for users who have ever need-
ed software they couldn’t run, multiple
personalities are an important step to-
ward sanity. ®

Frank Hayes is a wriler, communications consul-
tant, and former West Coast news editor for BYTE.
You can contact him on BIX as “frankhayes."”

